

 Phoenix LiveView

 v0.20.14

 Table of contents

 	Changelog

 	Introduction

 	Welcome

 	Server-side features

 	Assigns and HEEx templates

 	Deployments

 	Error and exception handling

 	Live layouts

 	Live navigation

 	Security considerations

 	Telemetry

 	Uploads

 	Gettext for internationalization

 	Client-side integration

 	Bindings

 	DOM patching & temporary assigns

 	Form bindings

 	JavaScript interoperability

 	External Uploads

 	

 	Modules

 	Phoenix.Component

 	Phoenix.LiveComponent

 	Phoenix.LiveView

 	Phoenix.LiveView.AsyncResult

 	Phoenix.LiveView.Controller

 	Phoenix.LiveView.JS

 	Phoenix.LiveView.Router

 	Phoenix.LiveViewTest

 	Configuration

 	Phoenix.LiveView.HTMLFormatter

 	Phoenix.LiveView.Logger

 	Phoenix.LiveView.Socket

 	Testing structures

 	Phoenix.LiveViewTest.Element

 	Phoenix.LiveViewTest.Upload

 	Phoenix.LiveViewTest.View

 	Upload structures

 	Phoenix.LiveView.UploadConfig

 	Phoenix.LiveView.UploadEntry

 	Phoenix.LiveView.UploadWriter

 	Plugin API

 	Phoenix.LiveComponent.CID

 	Phoenix.LiveView.Component

 	Phoenix.LiveView.Comprehension

 	Phoenix.LiveView.Engine

 	Phoenix.LiveView.HTMLEngine

 	Phoenix.LiveView.Rendered

 	Phoenix.LiveView.TagEngine

Changelog

 0.20.14 (2024-03-13)

 Bug fixes

	Fix warning caused by optional Floki dependency

 0.20.13 (2024-03-12)

 Bug fixes

	Fix LiveComponent rendering bug causing elements to disappear when a LiveComponent child is removed and added back by the server

 Enhancements

	Warn when accessing the socket in a function passed to assign_async / start_async

 0.20.12 (2024-03-04)

 Enhancements

	Phoenix LiveView requires Elixir v1.13+

 Bug fixes

	Do not send Telemetry metadata as Logger event, this avoids the metadata from being accidentally copied to other processes
	Ensure LiveViewTest does not crash on IDs with foreign characters, such as question marks
	Fix a bug where LiveViewTest could not perform a connected mount on a page with certain streams

 0.20.11 (2024-02-29)

 Bug fixes

	Fix auto uploads with invalid entries incorrectly proceeding with a form submit instead of halting, causing entries in progress errors
	Fix auto upload entries failing to be uploaded on submit after moving into a valid state, such as falling within max_entries
	Fix TagEngine clause warning

 0.20.10 (2024-02-28)

 Bug fixes

	Fix cancelled uploads being re-added
	Fix form submits for previously submitted invalid upload entries causing errors instead of preflighted new upload entries
	Fix HTML formatter not respecting phx-no-format for script tags

 Enhancements

	Add additional HEEx debug annotations for the caller locations of function component invocations
	Abandon form recovery if recovery event fails

 0.20.9 (2024-02-19)

 Bug fixes

	Fix error in LiveViewTest when a phx-update="ignore" container is added dynamically to the DOM

 0.20.8 (2024-02-19)

 Bug fixes

	Fix live uploader issue when a form contained more than one <.live_file_input>
	Fix phx-remove on re-added stream items trigging the remove when it should not
	Fix js error attempting to re-order an element that does not exist in the DOM

 Enhancements

	Align LiveViewTest with JavaScript DOM patching behavior for phx-update="ignore" when updating attributes in LiveViewTest

 0.20.7 (2024-02-15)

 Bug fixes

	Fix phx-skip containers leaking into DOM on first patch in some cases (#3117)
	Fix phx-feedback-for failing to be properly updated in some cases (#3122)

 0.20.6 (2024-02-14)

 Bug fixes

	Fix stream items being excluded in LiveViewTest
	Fix stream items failing to properly update nested streams or LiveComponents
	Fix debounce/blur regression causing unexpeted events to be sent

 0.20.5 (2024-02-08)

 Deprecations

	Deprecate phx-feedback-group introduced in the previous release, the goal is to move feedback handling into Elixir and out of the DOM

 Bug fixes

	Fix blur event on phx-debounce being dispatched incorrectly
	Fix open_browser not working on WSL for project under UNIX file systems
	Match browser stream insert ordering behavior in LiveViewTest
	Fix phx-click-away not working when element is partially hidden
	Fix phx-feedback-for classes not being applied in some cases
	Fix form submitter failing to be sent as key/value pair in some cases
	Fix null form reference causing errors on some DOM patches

 0.20.4 (2024-02-01)

 Bug fixes

	Fix phx-remove on sticky LiveViews
	Fix phx-disabled-with not restoring button disabled state on empty diff acknowledgement
	Fix stream reset not ordering items correctly
	Send {:shutdown, :cancel} to handle_async/3 on cancel_async
	Prevent events from child LiveViews from bubbling up to root LiveView when child is not mounted yet
	Fix phx-mounted being called twice for stream items
	Never move existing stream items if they already exist (use stream_delete and then stream_insert instead)
	Fix live component rendering breaking when the server adds a component back that was pruned by the client (#3026)
	Allow redirect from upload progress callback
	Fix nested components getting skipped when resetting a stream
	Fix nested components getting skipped in LiveComponents
	Fix stream limits not being applied correctly when bulk inserting
	Fix click-away being called incorrectly on form submits
	Fix inconsistencies between LiveViewTest and browser stream implementations
	Fix phx-feedback-for being reapplied when there are multiple inputs with the same name
	Ensure phx-update="ignore" behaves consistently: updates from the server to the element's content and attributes are ignored, except for data attributes

 Enhancements

	Add JS.toggle_class
	Add JS.toggle_attribute
	Force update select options when the options changed from the server while a select has focus
	Introduce phx-feedback-group for handling feedback for composite input groups
	Add validate_attrs to slots
	Support phx-viewport bindings in scrollable containers
	Perform client redirect when trying to live nav from dead client to avoid extra round trip
	Allow regular buttons with name/value attributes to send form events and adjusted dynamic form documentation to reflect this
	Allow form attribute on live_file_input

 0.20.3 (2024-01-02)

 Bug fixes

	Fix phx-viewport bindings failing to fire after navigation
	Preserve order of appended items in stream in LiveViewTest
	Fix order of items on client when resetting a stream to existing set of items

 Enhancements

	Support JS.push from dead views

 0.20.2 (2023-12-18)

 Bug fixes

	Fix JavaScript error when submitting a form that has in progress uploads
	Fix JS command :target failing to work when used as phx-submit or phx-change with a selector-based target
	Fix JS.focus() failing to focus negative tabindex
	Fix LiveViewTest failing to remove items after stream reset
	Fix phx-window-blur and phx-window-focus events not firing
	Fix SVG anchor links throwing errors when clicked

 Enhancements

	Speed up DOM patching performance 3-30x 🔥
	Support handle_async lifecycle callback
	Extend visibility checks for phx-click-away to better handle whether an element is visible in the viewport or not
	Allow JS.patch and JS.navigate to be tested with render_click
	Support :supervisor option to assign_async and start_async

 Deprecations

	Deprecate phx-update="append" and phx-update="prepend" in favor of phx-update="stream"

 0.20.1 (2023-10-09)

 Bug fixes

	Fix error with live uploads auto_upload: true when a file fails to preflight
	Fix error with live uploads where an early exit can cause a map key error
	Fix match error on live navigation when reconnecting from client

 Enhancements

	Support new meta() method on File/Blob sublcasses on JavaScript client to allow the client to pass arbitrary metadata when using upload/uploadTo from hook. The %UploadEntry{}'s new client_meta field is populated from this information.
	Improve void tagging and error messages

 0.20.0 (2023-09-22)

 Deprecations

	Deprecate the ~L sigil in favor of ~H
	Deprecate preload/1 in LiveComponent in favor of update_many/1
	Deprecate live_component/2-3 in favor of <.live_component />
	Deprecate live_patch in favor of <.link patch={...} />
	Deprecate live_redirect in favor of <.link navigate={...} />
	Deprecate live_title_tag in favor of <.live_title />

 Backwards incompatible changes

	Remove previously deprecated render_block/2 in favor of render_slot/2
	Remove previously deprecated live_img_preview/2 in favor of <.live_img_preview />
	Remove previously deprecated live_file_input/2 in favor of <.live_file_input />

 Bug fixes

	Fix uploads with auto_upload: true failing to propagate errors when any individual entry is invalid
	Fix uploads with auto_upload: true failing to auto upload valid entries errors when any individual entry is invalid
	Fix error on form recovery with auto_upload: true
	Fix issue on form recovery where hidden inputs would be selected by mistake
	Fix form recovery when phx-change is a JS command
	Fix stream reset on nested live components with nested streams
	Fix window location resetting to null when using nested LiveView on connection error
	Fix anchors within contenteditable causing LiveSocket disconnects

 Enhancements

	Add heex debug annotations via config :phoenix_live_view, debug_heex_annotations: true, which provides special HTML comments that wrap around rendered components to help you identify where markup in your HTML document is rendered within your function component tree
	Add assign_async, start_async, <.async_result> and, AsyncResult for declaratively handling async operations in a LiveView or LiveComponent.
	Supporting passing @myself for Phoenix.LiveView.send_update/3
	Support change tracking on Access.get
	Allow overriding id of <.live_img_preview>

 0.19.5 (2023-07-19)

 Backwards incompatible changes

	The close/1 callback of Phoenix.LiveView.UploadWriter is now close/2 with the close reason passed as the second argument.
	The write_chunk callback of Phoenix.LiveView.UploadWriter must now return the updated
writer state when an error occurs. Instead of {:error, reason}, return {:error, reason, new_state}.

 Enhancements

	Pass close reason to Phoenix.LiveView.UploadWriter close.
	Dispatch phx:navigate window events when LiveView changes the history state

 Bug fixes

	Call Phoenix.LiveView.UploadWriter close callback when LiveView goes down or connection is lost
	Fix JS.patch to a Phoenix router scope with :host causing errors
	Fix immediate navigation after patch not updating URL
	Fix stream reset on nested streams inside live components causing nested stream children to be removed

 0.19.4 (2023-07-10)

 Enhancements

	Introduce Phoenix.LiveView.UploadWriter

 0.19.3 (2023-06-21)

 Bug fixes

	Fix push_event inside component update not being sent in some cases
	Bring back accidentally deprecated upload_errors/1

 0.19.2 (2023-06-12)

 Bug fixes

	Fix issue when <input name="value" /> is used

 0.19.1 (2023-06-06)

 Enhancements

	Allow accept attribute on <.live_file_input> to override default values

 Bug fixes

	Fix issue causing anchor clicks to disconnect LV when they were already handled via preventDefault() by other scripts

 0.19.0 (2023-05-29)

 Backwards incompatible changes

	Drop support for passing an id to the phx-feedback-for attribute. An input name must be passed instead.
	Remove previously deprecated let attribute. Use :let instead
	Remove previously deprecated <%= live_img_preview(entry) %>. Use <.live_img_preview entry={entry} /> instead
	Remove previously deprecated <%= live_file_input(upload) %>. Use <.live_file_input upload={upload} /> instead
	Remove previously deprecated <%= live_component(Component) %>. Use <.live_component module={Component} id=\"hello\" /> instead
	Don't convert underscores to dashes automatically when rendering HTML attributes. Use dashes or underscores where appropriate instead.

 Enhancements

	Support stream resets with bulk insert operations
	Support ordered inputs within inputs_for, to pair with Ecto's new sort_param and drop_param casting
	Send form phx-value's on form events

 Deprecations

	Deprecate passing :dom_id to stream/4 in favor of stream_configure/3
	Deprecate render_block/2 in favor of render_slot/2
	Deprecate <%= live_img_preview(entry, opts) %>. Use <.live_img_preview entry={entry} {opts} />
	Deprecate <%= live_file_input(upload, opts) %>. Use <.live_file_input upload={upload} {opts} />
	Deprecate stateless LiveComponent in favor of function components or in favor of <.live_component id={...} /> (note the id is required)

 Bug fixes

	Fix LiveView disconnects when clicking a download link
	Fix stream deletes not being sent on nested for comprehensions
	Fix phx-disconnected bindings not firing on mount failures
	Support form recovery on forms with only hidden inputs

 0.18.18 (2023-03-16)

 Bug fixes

	Allow :live_action to be assigned in a component
	Only filter internal function component attributes in assigns_to_attributes
	Only include submitter with name

 Enhancements

	Add JS.exec command for executing commands defined on other element attributes

 0.18.17 (2023-03-09)

 Bug Fixes

	Fix callbacks like handle_info failing to be invoked in development after a code change with the Phoenix code reloader

 Enhancements

	Support submitter on form submit events.
	Avoid compile-time dependency for attr when referencing structs
	Validate reserved assigns. Attempting to assign :uploads, :streams, :live_action, :socket, :myself will now raise in LiveView and LiveComponent

 0.18.16 (2023-02-23)

 Enhancements

	Support streams in Live Components
	Optimize plug error translation when a Plug.Exception is raised over connected LiveView

 Bug Fixes

	Fix formatter issues when there are multiple HTML comments

 0.18.15 (2023-02-16)

 Bug Fixes

	Fix JS.transition applying incorrect classes

 Enhancements

	Reset phx-feedback-for errors on type="reset" inputs and buttons

 0.18.14 (2023-02-14)

 Bug Fixes

	Fix LiveViewTest failing to find main live view

 0.18.13 (2023-02-10)

 Enhancements

	Improve error message when failing to use Phoenix.Component

 0.18.12 (2023-02-10)

 Enhancements

	Introduce streams for efficiently handling large collections
	Allow replies from :handle_event lifecycle hooks
	Add <.inputs_for> component to Phoenix.Component
	Support replies on lifecycle :handle_event hooks

 Bug Fixes

	Fix change tracking when re-assigning a defaulted attribute to same default value
	Fix upload drag and drop failing to worka after using file select dialog
	Fix form recovery when form's first input is phx-change

 0.18.11 (2023-01-19)

 Bug Fixes

	Fix socket unloading connection for forms that have defaulted prevented

 0.18.10 (2023-01-18)

 Bug Fixes

	Fix svg tags with href incorrectly unloading socket on click
	Fix form submits with target="_blank" incorrectly unloading socket on submit

 0.18.9 (2023-01-17)

 Bug Fixes

	Fix regular form submits failing to be dispatched

 0.18.8 (2023-01-16)

 Enhancements

	Restore scroll position on back when previous navigation was live patch

 Bug Fixes

	Fix live layout not being applied until connected render

 0.18.7 (2023-01-13)

 Bug Fixes

	Fix live layout not being applied when passed to :live_session during disconnect render
	Fix external anchor clicks and links with hashes incorrectly unloading socket

 0.18.6 (2023-01-09)

 Bug Fixes

	Fix external anchor click unloading on external click

 0.18.5 (2023-01-09)

 Bug Fixes

	Fix external anchor click unloading socket

 0.18.4 (2023-01-05)

 Enhancements

	Support string upload name to support dynamically generated allow_upload's

 Bug Fixes

	Fix nested LiveView race condition on live patch causing nested child to skip updates in some cases
	Fix browser history showing incorrect title when using live navigation with @page_title
	Fix undefined _target param when using JS.push for form changes
	Fix phx-no-feedback missing from inputs added after a form submit
	Fix phx-disconnected events firing when navigating away or submitting external forms

 0.18.3 (2022-10-26)

 Enhancements

	Add embed_templates to Phoenix.Component for embedding template files as function components
	Raise on global slot attributes

 Bug Fixes

	Fix bug on slots when passing multiple slot entries with mix if/for syntax

 0.18.2 (2022-10-04)

 Bug Fixes

	Fix match error when defining :values before :default
	Allow tuples in external redirects
	Fix race condition on dispatching click away when enter is pressed
	Fix formatter breaking inline blocks when surrounded by text without whitespace

 Enhancements

	Add intersperse component for rendering a separator between an enumerable

 0.18.1 (2022-09-28)

 Bug Fixes

	Fix phx-loading class being applied to dead views
	Fix <.live_img_preview /> causing invalid attribute errors on uploads
	Do not fire phx events when element is disabled

 Enhancements

	Support :include option to extend global attributes on a case-by-case basis
	Warn when accessing a variable binding defined outside of ~H

 0.18.0 (2022-09-20)

LiveView v0.18 includes a major new feature in the form of declarative assigns with new attr
and slot APIs for specifying which attributes a function component supports, the type,
and default values. Attributes and slots are compile-time verified and emit warnings (requires Elixir v1.14.0+).
v0.18 includes a number of new function components which replace their EEx expression
counterparts <%= ... %>. For example, live_redirect, live_patch, and Phoenix.HTML's
link have been replaced by a unified Phoenix.Component.link/1 function component:
<.link href="https://myapp.com">my app</.link>
<.link navigate={@path}>remount</.link>
<.link patch={@path}>patch</.link>
Those new components live in the Phoenix.Component module. Phoenix.LiveView.Helpers
itself has been soft deprecated and all relevant functionality has been migrated.
You must import Phoenix.Component where you previously imported Phoenix.LiveView.Helpers
when upgrading. You may also need to import Phoenix.Component where you also imported Phoenix.LiveView and some of its functions have been moved to Phoenix.Component.
Additionally, the special let attribute on function components have been deprecated by
a :let usage.

 Deprecations

	live_redirect - deprecate in favor of new <.link navigate={..}> component of Phoenix.Component
	live_patch - deprecate in favor of new <.link patch={..}> component of Phoenix.Component
	push_redirect - deprecate in favor of new push_navigate function on Phoenix.LiveView

 Enhancements

	[Component] Add declarative assigns with compile-time verifications and warnings via attr/slot
	[Component] Add new attrs :let and :for, and :if with HTML tag, function component, and slot support. We still support let but the formatter will convert it to :let and soon it will be deprecated.
	[Component] Add dynamic_tag function component
	[Component] Add link function component
	[Component] Add focus_wrap function component to wrap focus around content like modals and dialogs for accessibility
	[Logger] Add new LiveView logger with telemetry instrumentation for lifecycle events
	[JS] Add new JS commands for focus, focus_first, push_focus, and pop_focus for accessibility
	[Socket] Support sharing Phoenix.LiveView.Socket with regular channels via use Phoenix.LiveView.Socket
	Add _live_referer connect param for handling push_navigate referal URL
	Add new phx-connected and phx-disconnected bindings for reacting to lifecycle changes
	Add dead view support for JS commands
	Add dead view support for hooks

 Bug fixes

	Fix external upload issue where listeners are not cleaned up when an external failure happens on the client
	Do not debounce phx-blur

 0.17.12 (2022-09-20)

 Enhancements

	Add support for upcoming Phoenix 1.7 flash interface

 0.17.11 (2022-07-11)

 Enhancements

	Add replaceTransport to LiveSocket

 Bug fixes

	Cancel debounced events from firing after a live navigation event
	Fix hash anchor failing to scroll to anchor element on live navigation
	Do not debounce phx-blur events

 0.17.10 (2022-05-25)

 Bug fixes

	[Formatter] Preserve single quote delimiter on attrs
	[Formatter] Do not format inline elements surrounded by texts without whitespaces
	[Formatter] Keep text and eex along when there isn't a whitespace
	[Formatter] Fix intentional line breaks after eex expressions
	[Formatter] Handle self close tags as inline
	[Formatter] Do not format inline elements without whitespaces among them
	[Formatter] Do not format when attr contenteditable is present

 Enhancements

	[Formatter] Introduce special attr phx-no-format to skip formatting

 0.17.9 (2022-04-07)

 Bug fixes

	Fix sticky LiveViews failing to be patched during live navigation
	Do not raise on dynamic phx-update value

 0.17.8 (2022-04-06)

 Enhancements

	Add HEEx formatter
	Support phx-change on individual inputs
	Dispatch MouseEvent on client
	Add :bubbles option to JS.dispatch to control event bubbling
	Expose underlying liveSocket instance on hooks
	Enable client debug by default on localhost

 Bug fixes

	Fix hook and sticky LiveView issues caused by back-to-back live redirects from mount
	Fix hook destroyed callback failing to be invoked for children of phx-remove in some cases
	Do not failsafe reload the page on push timeout if disconnected
	Do not bubble navigation click events to regular phx-click's
	No longer generate csrf_token for forms without action, reducing the payload during phx-change/phx-submit events

 0.17.7 (2022-02-07)

 Enhancements

	Optimize nested for comprehension diffs

 Bug fixes

	Fix error when live_redirect links are clicked when not connected in certain cases

 0.17.6 (2022-01-18)

 Enhancements

	Add JS.set_attribute and JS.remove_attribute
	Add sticky: true option to live_render to maintain a nested child on across live redirects
	Dispatch phx:show-start, phx:show-end, phx:hide-start and phx:hide-end on JS.show|hide|toggle
	Add get_connect_info/2 that also works on disconnected render
	Add LiveSocket constructor options for configuration failsafe behavior via new maxReloads, reloadJitterMin, reloadJitterMax, failsafeJitter options

 Bug fixes

	Show form errors after submit even when no changes occur on server
	Fix phx-disable-with failing to disable elements outside of forms
	Fix phx ref tracking leaving elements in awaiting state when targeting an external LiveView
	Fix diff on response failing to await for active transitions in certain cases
	Fix phx-click-away not respecting phx-target
	Fix "disconnect" broadcast failing to failsafe refresh the page
	Fix JS.push with :target failing to send to correct component in certain cases

 Deprecations

	Deprecate Phoenix.LiveView.get_connect_info/1 in favor of get_connect_info/2
	Deprecate Phoenix.LiveViewTest.put_connect_info/2 in favor of calling the relevant functions in Plug.Conn
	Deprecate returning "raw" values from upload callbacks on Phoenix.LiveView.consume_uploaded_entry/3 and Phoenix.LiveView.consume_uploaded_entries/3. The callback must return either {:ok, value} or {:postpone, value}. Returning any other value will emit a warning.

 0.17.5 (2021-11-02)

 Bug fixes

	Do not trigger phx-click-away if element is not visible
	Fix phx-remove failing to tear down nested live children

 0.17.4 (2021-11-01)

 Bug fixes

	Fix variable scoping issues causing various content block or duplication rendering bugs

 0.17.3 (2021-10-28)

 Enhancements

	Support 3-tuple for JS class transitions to support staged animations where a transition class is applied with a starting and ending class
	Allow JS commands to be executed on DOM nodes outside of the LiveView container

 Optimization

	Avoid duplicate statics inside comprehension. In previous versions, comprehensions were able to avoid duplication only in the content of their root. Now we recursively traverse all comprehension nodes and send the static only once for the whole comprehension. This should massively reduce the cost of sending comprehensions over the wire

 Bug fixes

	Fix HTML engine bug causing expressions to be duplicated or not rendered correctly
	Fix HTML engine bug causing slots to not be re-rendered when they should have
	Fix form recovery being sent to wrong target

 0.17.2 (2021-10-22)

 Bug fixes

	Fix HTML engine bug causing attribute expressions to be incorrectly evaluated in certain cases
	Fix show/hide/toggle custom display not being restored
	Fix default to target for JS.show|hide|dispatch
	Fix form input targeting

 0.17.1 (2021-10-21)

 Bug fixes

	Fix SVG element support for phx binding interactions

 0.17.0 (2021-10-21)

 Breaking Changes

on_mount changes
The hook API introduced in LiveView 0.16 has been improved based on feedback.
LiveView 0.17 removes the custom module-function callbacks for the
Phoenix.LiveView.on_mount/1 macro and the :on_mount option for
Phoenix.LiveView.Router.live_session/3 in favor of supporting a custom
argument. For clarity, the module function to be invoked during the mount
lifecycle stage will always be named on_mount/4.
For example, if you had invoked on_mount/1 like so:
on_mount MyAppWeb.MyHook
on_mount {MyAppWeb.MyHook, :assign_current_user}
and defined your callbacks as:
my_hook.ex

def mount(_params, _session, _socket) do
end

def assign_current_user(_params, _session, _socket) do
end
Change the callback to:
my_hook.ex

def on_mount(:default, _params, _session, _socket) do
end

def on_mount(:assign_current_user, _params, _session, _socket) do
end
When given only a module name, the first argument to on_mount/4 will be the
atom :default.
LEEx templates in stateful LiveComponents
Stateful LiveComponents (where an :id is given) must now return HEEx templates
(~H sigil or .heex extension). LEEx templates (~L sigil or .leex extension)
are no longer supported. This addresses bugs and allows stateful components
to be rendered more efficiently client-side.
phx-disconnected class has been replaced with phx-loading
Due to a bug in the newly released Safari 15, the previously used .phx-disconnected class has been replaced by a new .phx-loading class. The reason for the change is phx.new included a .phx-disconnected rule in the generated app.css which triggers the Safari bug. Renaming the class avoids applying the erroneous rule for existing applications. Folks can upgrade by simply renaming their .phx-disconnected rules to .phx-loading.
phx-capture-click has been deprecated in favor of phx-click-away
The new phx-click-away binding replaces phx-capture-click and is much more versatile because it can detect "click focus" being lost on containers.
Removal of previously deprecated functionality
Some functionality that was previously deprecated has been removed:
	Implicit assigns in live_component do-blocks is no longer supported
	Passing a @socket to live_component will now raise if possible

 Enhancements

	Allow slots in function components: they are marked as <:slot_name> and can be rendered with <%= render_slot @slot_name %>
	Add JS command for executing JavaScript utility operations on the client with an extended push API
	Optimize string attributes:	If the attribute is a string interpolation, such as <div class={"foo bar #{@baz}"}>, only the interpolation part is marked as dynamic
	If the attribute can be empty, such as "class" and "style", keep the attribute name as static

	Add a function component for rendering Phoenix.LiveComponent. Instead of <%= live_component FormComponent, id: "form" %>, you must now do: <.live_component module={FormComponent} id="form" />

 Bug fixes

	Fix LiveViews with form recovery failing to properly mount following a reconnect when preceded by a live redirect
	Fix stale session causing full redirect fallback when issuing a push_redirect from mount
	Add workaround for Safari bug causing tags with srcset and video with autoplay to fail to render
	Support EEx interpolation inside HTML comments in HEEx templates
	Support HTML tags inside script tags (as in regular HTML)
	Raise if using quotes in attribute names
	Include the filename in error messages when it is not possible to parse interpolated attributes
	Make sure the test client always sends the full URL on live_patch/live_redirect. This mirrors the behaviour of the JavaScript client
	Do not reload flash from session on live_redirects
	Fix select drop-down flashes in Chrome when the DOM is patched during focus

 Deprecations

	<%= live_component MyModule, id: @user.id, user: @user %> is deprecated in favor of <.live_component module={MyModule} id={@user.id} user={@user} />. Notice the new API requires using HEEx templates. This change allows us to further improve LiveComponent and bring new features such as slots to them.
	render_block/2 in deprecated in favor of render_slot/2

 0.16.4 (2021-09-22)

 Enhancements

	Improve HEEx error messages
	Relax HTML tag validation to support mixed case tags
	Support self closing HTML tags
	Remove requirement for handle_params to be defined for lifecycle hooks

 Bug fixes

	Fix pushes failing to include channel join_ref on messages

 0.16.3 (2021-09-03)

 Bug fixes

	Fix on_mount hooks calling view mount before redirecting when the hook issues a halt redirect.

 0.16.2 (2021-09-03)

 Enhancements

	Improve error messages on tokenization
	Improve error message if @inner_block is missing

 Bug fixes

	Fix phx-change form recovery event being sent to wrong component on reconnect when component order changes

 0.16.1 (2021-08-26)

 Enhancements

	Relax phoenix_html dependency requirement
	Allow testing functional components by passing a function reference
to Phoenix.LiveViewTest.render_component/3

 Bug fixes

	Do not generate CSRF tokens for non-POST forms
	Do not add compile-time dependencies on on_mount declarations

 0.16.0 (2021-08-10)

 Security Considerations Upgrading from 0.15

LiveView v0.16 optimizes live redirects by supporting navigation purely
over the existing WebSocket connection. This is accomplished by the new
live_session/3 feature of Phoenix.LiveView.Router. The
security guide has always stressed
the following:
... As we have seen, LiveView begins its life-cycle as a regular HTTP
request. Then a stateful connection is established. Both the HTTP
request and the stateful connection receives the client data via
parameters and session. This means that any session validation must
happen both in the HTTP request (plug pipeline) and the stateful
connection (LiveView mount) ...

These guidelines continue to be valid, but it is now essential that the
stateful connection enforces authentication and session validation within
the LiveView mount lifecycle because a live_redirect from the client
will not go through the plug pipeline as a hard-refresh or initial HTTP
render would. This means authentication, authorization, etc that may be
done in the Plug.Conn pipeline must also be performed within the
LiveView mount lifecycle.
Live sessions allow you to support a shared security model by allowing
live_redirects to only be issued between routes defined under the same
live session name. If a client attempts to live redirect to a different
live session, it will be refused and a graceful client-side redirect will
trigger a regular HTTP request to the attempted URL.
See the Phoenix.LiveView.Router.live_session/3 docs for more information
and example usage.

 New HTML Engine

LiveView v0.16 introduces HEEx (HTML + EEx) templates and the concept of function
components via Phoenix.Component. The new HEEx templates validate the markup in
the template while also providing smarter change tracking as well as syntax
conveniences to make it easier to build composable components.
A function component is any function that receives a map of assigns and returns
a ~H template:
defmodule MyComponent do
 use Phoenix.Component

 def btn(assigns) do
 ~H"""
 <button class="btn"><%= @text %></button>
 """
 end
end
This component can now be used as in your HEEx templates as:
<MyComponent.btn text="Save">
The introduction of HEEx and function components brings a series of deprecation
warnings, some introduced in this release and others which will be added in the
future. Note HEEx templates require Elixir v1.12+.

 Upgrading and deprecations

The main deprecation in this release is that the ~L sigil and the .leex extension
are now soft-deprecated. The docs have been updated to discourage them and using them
will emit warnings in future releases. We recommend using the ~H sigil and the .heex
extension for all future templates in your application. You should also plan to migrate
the old templates accordingly using the recommendations below.
Migrating from LEEx to HEEx is relatively straightforward. There are two main differences.
First of all, HEEx does not allow interpolation inside tags. So instead of:
<div id="<%= @id %>">
 ...
</div>
One should use the HEEx syntax:
<div id={@id}>
 ...
</div>
The other difference is in regards to form_for. Some templates may do the following:
~L"""
<%= f = form_for @changeset, "#" %>
 <%= input f, :foo %>
</form>
"""
However, when converted to ~H, it is not valid HTML: there is a </form> tag but
its opening is hidden inside the Elixir code. On LiveView v0.16, there is a function
component named form:
~H"""
<.form :let={f} for={@changeset}>
 <%= input f, :foo %>
</.form>
"""
We understand migrating all templates from ~L to ~H can be a daunting task.
Therefore we plan to support ~L in LiveViews for a long time. However, we can't
do the same for stateful LiveComponents, as some important client-side features and
optimizations will depend on the ~H sigil. Therefore our recommendation is to
replace ~L by ~H first in live components, particularly stateful live components.
Furthermore, stateless live_component (i.e. live components without an :id)
will be deprecated in favor of the new function components. Our plan is to support
them for a reasonable period of time, but you should avoid creating new ones in
your application.

 Breaking Changes

LiveView 0.16 removes the :layout and :container options from
Phoenix.LiveView.Routing.live/4 in favor of the :root_layout
and :container options on Phoenix.Router.live_session/3.
For instance, if you have the following in LiveView 0.15 and prior:
live "/path", MyAppWeb.PageLive, layout: {MyAppWeb.LayoutView, "custom_layout.html"}
Change it to:
live_session :session_name, root_layout: {MyAppWeb.LayoutView, "custom_layout.html"} do
 live "/path", MyAppWeb.PageLive
end
On the client, the phoenix_live_view package no longer provides a default export for LiveSocket.
If you have the following in your JavaScript entrypoint (typically located at assets/js/app.js):
import LiveSocket from "phoenix_live_view"
Change it to:
import { LiveSocket } from "phoenix_live_view"
Additionally on the client, the root LiveView element no longer exposes the
LiveView module name, therefore the phx-view attribute is never set.
Similarly, the viewName property of client hooks has been removed.
Codebases calling a custom function component/3 should rename it or specify its module to avoid a conflict,
as LiveView introduces a macro with that name and it is special cased by the underlying engine.

 Enhancements

	Introduce HEEx templates
	Introduce Phoenix.Component
	Introduce Phoenix.Router.live_session/3 for optimized live redirects
	Introduce on_mount and attach_hook hooks which provide a mechanism to tap into key stages of the LiveView lifecycle
	Add upload methods to client-side hooks
	[Helpers] Optimize live_img_preview rendering
	[Helpers] Introduce form function component which wraps Phoenix.HTML.form_for
	[LiveViewTest] Add with_target for scoping components directly
	[LiveViewTest] Add refute_redirected
	[LiveViewTest] Support multiple phx-target values to mirror JS client
	[LiveViewTest] Add follow_trigger_action
	[JavaScript Client] Add sessionStorage option LiveSocket constructor to support client storage overrides
	[JavaScript Client] Do not failsafe reload the page in the background when a tab is unable to connect if the page is not visible

 Bug fixes

	Make sure components are loaded on render_component to ensure all relevant callbacks are invoked
	Fix Phoenix.LiveViewTest.page_title returning nil in some cases
	Fix buttons being re-enabled when explicitly set to disabled on server
	Fix live patch failing to update URL when live patch link is patched again via handle_params within the same callback lifecycle
	Fix phx-no-feedback class not applied when page is live-patched
	Fix DOMException, querySelector, not a valid selector when performing DOM lookups on non-standard IDs
	Fix select dropdown flashing close/opened when assigns are updated on Chrome/macOS
	Fix error with multiple live_file_input in one form
	Fix race condition in showError causing null querySelector
	Fix statics not resolving correctly across recursive diffs
	Fix no function clause matching in Phoenix.LiveView.Diff.many_to_iodata
	Fix upload input not being cleared after files are uploaded via a component
	Fix channel crash when uploading during reconnect
	Fix duplicate progress events being sent for large uploads

 Deprecations

	Implicit assigns when passing a do-end block to live_component is deprecated
	The ~L sigil and the .leex extension are now soft-deprecated in favor of ~H and .heex
	Stateless live components (a live_component call without an :id) are deprecated in favor of the new function component feature

 0.15.7 (2021-05-24)

 Bug fixes

	Fix broken webpack build throwing missing morphdom dependency

 0.15.6 (2021-05-24)

 Bug fixes

	Fix live patch failing to update URL when live patch link is patched again from handle_params
	Fix regression in LiveViewTest.render_upload/3 when using channel uploads and progress callback
	Fix component uploads not being cleaned up on remove
	Fix KeyError on LiveView reconnect when an active upload was previously in progress

 Enhancements

	Support function components via component/3
	Optimize progress events to send less messages for larger file sizes
	Allow session and local storage client overrides

 Deprecations

	Deprecate @socket/socket argument on live_component/3 call

 0.15.5 (2021-04-20)

 Enhancements

	Add upload_errors/1 for returning top-level upload errors

 Bug fixes

	Fix consume_uploaded_entry/3 with external uploads causing inconsistent entries state
	Fix push_event losing events when a single diff produces multiple events from different components
	Fix deep merging of component tree sharing

 0.15.4 (2021-01-26)

 Bug fixes

	Fix nested live_render's causing remound of child LiveView even when ID does not change
	Do not attempt push hook events unless connected
	Fix preflighted refs causing auto_upload: true to fail to submit form
	Replace single upload entry when max_entries is 1 instead of accumulating multiple file selections
	Fix static_path in open_browser failing to load stylesheets

 0.15.3 (2021-01-02)

 Bug fixes

	Fix push_redirect back causing timeout on the client

 0.15.2 (2021-01-01)

 Backwards incompatible changes

	Remove beforeDestroy from phx-hook callbacks

 Bug fixes

	Fix form recovery failing to send input on first connection failure
	Fix hooks not getting remounted after LiveView reconnect
	Fix hooks reconnected callback being fired with no prior disconnect

 0.15.1 (2020-12-20)

 Enhancements

	Ensure all click events bubble for mobile Safari
	Run consume_uploaded_entries in LiveView caller process

 Bug fixes

	Fix hooks not getting remounted after LiveView recovery
	Fix bug causing reload with jitter on timeout from previously closed channel
	Fix component child nodes being lost when component patch goes from single root node to multiple child siblings
	Fix phx-capture-click triggering on mouseup during text selection
	Fix LiveView push_event's not clearing up in components
	Fix <textarea> being patched by LiveView while focused

 0.15.0 (2020-11-20)

 Enhancements

	Add live uploads support for file progress, interactive file selection, and direct to cloud support
	Implement Phoenix.LiveViewTest.open_browser/2 that opens up a browser with the LiveView page

 Backwards incompatible changes

	Remove @inner_content in components and introduce render_block for rendering component @inner_block
	Remove @live_module in socket templates in favor of @socket.view

 Bug fixes

	Make sure URLs are decoded after they are split
	Do not recover forms without inputs
	Fix race condition when components are removed and then immediately re-added before the client can notify their CIDs have been destroyed
	Do not render LiveView if only events/replies have been added to the socket
	Properly merge different components when sharing component subtrees on initial render
	Allow variables inside do-blocks to be tainted
	Fix push_redirect from mount hanging on the client and causing a fallback to full page reload when following a clicked live_redirect on the client

 0.14.8 (2020-10-30)

 Bug fixes

	Fix compatibility with latest Plug

 0.14.7 (2020-09-25)

 Bug fixes

	Fix redirect(socket, external: ...) when returned from an event
	Properly follow location hashes on live patch/redirect
	Fix failure in Phoenix.LiveViewTest when phx-update has non-HTML nodes as children
	Fix phx_trigger_action submitting the form before the DOM updates are complete

 0.14.6 (2020-09-21)

 Bug fixes

	Fix race condition on phx-trigger-action causing reconnects before server form submit

 0.14.5 (2020-09-20)

 Enhancements

	Optimize DOM prepend and append operations
	Add Phoenix.LiveView.send_update_after/3

 Bug fixes

	Fix scroll position when using back/forward with live_redirect's
	Handle recursive components when generating diffs
	Support hard redirects on mount
	Properly track nested components on deletion on Phoenix.LiveViewTest

 0.14.4 (2020-07-30)

 Bug fixes

	Fix hidden inputs throwing selection range error

 0.14.3 (2020-07-24)

 Enhancements

	Support render_layout with LiveEEx

 Bug fixes

	Fix focused inputs being overwritten by latent patch
	Fix LiveView error when "_target" input name contains array
	Fix change tracking when passing a do-block to components

 0.14.2 (2020-07-21)

 Bug fixes

	Fix Map of assigns together with @inner_content causing no function clause matching in Keyword.put/3 error
	Fix LiveViewTest failing to patch children properly for append/prepend based phx-update's
	Fix argument error when providing :as option to a live route
	Fix page becoming unresponsive when the server crashes while handling a live patch
	Fix empty diff causing pending data-ref based updates, such as classes and phx-disable-with content to not be updated
	Fix bug where throttling keydown events would eat key presses
	Fix <textarea>'s failing to be disabled on form submit
	Fix text node DOM memory leak when using phx-update append/prepend

 Enhancements

	Allow :router to be given to render_component
	Display file on compile warning for ~L
	Log error on client when using a hook without a DOM ID
	Optimize phx-update append/prepend based DOM updates

 0.14.1 (2020-07-09)

 Bug fixes

	Fix nested live_render's failing to be torn down when removed from the DOM in certain cases
	Fix LEEx issue for nested conditions failing to be re-evaluated

 0.14.0 (2020-07-07)

 Bug fixes

	Fix IE11 issue where document.activeElement creates a null reference
	Fix setup and teardown of root views when explicitly calling liveSocket.disconnect() followed by liveSocket.connect()
	Fix error_tag failing to be displayed for non-text based inputs such as selects and checkboxes as the phx-no-feedback class was always applied
	Fix phx-error class being applied on live_redirect
	Properly handle Elixir's special variables, such as __MODULE__
	No longer set disconnected class during patch
	Track flash keys to fix back-to-back flashes from being discarded
	Properly handle empty component diffs in the client for cases where the component has already been removed on the server
	Make sure components in nested live views do not conflict
	Fix phx-static not being sent from the client for child views
	Do not fail when trying to delete a view that was already deleted
	Ensure beforeDestroy is called on hooks in children of a removed element

 Enhancements

	Allow the whole component static subtree to be shared when the component already exists on the client
	Add telemetry events to mount, handle_params, and handle_event
	Add push_event for pushing events and data from the server to the client
	Add client handleEvent hook method for receiving events pushed from the server
	Add ability to receive a reply to a pushEvent from the server via {:reply, map, socket}
	Use event listener for popstate to avoid conflicting with user-defined popstate handlers
	Log error on client when rendering a component with no direct DOM children
	Make assigns.myself a struct to catch mistakes
	Log if component doesn't exist on send_update, raise if module is unavailable

 0.13.3 (2020-06-04)

 Bug fixes

	Fix duplicate debounced events from being triggered on blur with timed debounce
	Fix client error when live_redirected route results in a redirect to a non-live route on the server
	Fix DOM siblings being removed when a rootless component is updated
	Fix debounced input failing to send last change when blurred via Tab, Meta, or other non-printable keys

 Enhancements

	Add dom option to LiveSocket with onBeforeElUpdated callback for external client library support of broad DOM operations

 0.13.2 (2020-05-27)

 Bug fixes

	Fix a bug where swapping a root template with components would cause the LiveView to crash

 0.13.1 (2020-05-26)

 Bug fixes

	Fix forced page refresh when push_redirect from a live_redirect

 Enhancements

	Optimize component diffs to avoid sending empty diffs
	Optimize components to share static values
	[LiveViewTest] Automatically synchronize before render events

 0.13.0 (2020-05-21)

 Backwards incompatible changes

	No longer send event metadata by default. Metadata is now opt-in and user defined at the LiveSocket level.
To maintain backwards compatibility with pre-0.13 behaviour, you can provide the following metadata option:

 let liveSocket = new LiveSocket("/live", Socket, {
 params: {_csrf_token: csrfToken},
 metadata: {
 click: (e, el) => {
 return {
 altKey: e.altKey,
 shiftKey: e.shiftKey,
 ctrlKey: e.ctrlKey,
 metaKey: e.metaKey,
 x: e.x || e.clientX,
 y: e.y || e.clientY,
 pageX: e.pageX,
 pageY: e.pageY,
 screenX: e.screenX,
 screenY: e.screenY,
 offsetX: e.offsetX,
 offsetY: e.offsetY,
 detail: e.detail || 1,
 }
 },
 keydown: (e, el) => {
 return {
 altGraphKey: e.altGraphKey,
 altKey: e.altKey,
 code: e.code,
 ctrlKey: e.ctrlKey,
 key: e.key,
 keyIdentifier: e.keyIdentifier,
 keyLocation: e.keyLocation,
 location: e.location,
 metaKey: e.metaKey,
 repeat: e.repeat,
 shiftKey: e.shiftKey
 }
 }
 }
 })

 Bug fixes

	Fix error caused by Chrome sending a keydown event on native UI autocomplete without a key
	Fix server error when a live navigation request issues a redirect
	Fix double window bindings when explicit calls to LiveSocket connect/disconnect/connect

 Enhancements

	Add Phoenix.LiveView.get_connect_info/1
	Add Phoenix.LiveViewTest.put_connect_info/2 and Phoenix.LiveViewTest.put_connect_params/2
	Add support for tracking static asset changes on the page across cold server deploys
	Add support for passing a @myself target to a hook's pushEventTo target
	Add configurable metadata for events with new metadata LiveSocket option
	Add "_mounts" key in connect params which specifies the number of times a LiveView has mounted

 0.12.1 (2020-04-19)

 Bug fixes

	Fix component innerHTML being discarded when a sibling DOM element appears above it, in cases where the component lacks a DOM ID
	Fix Firefox reconnecting briefly during hard redirects
	Fix phx-disable-with and other pending attributes failing to be restored when an empty patch is returned by server
	Ensure LiveView module is loaded before mount to prevent first application request logging errors if the very first request is to a connected LiveView

 0.12.0 (2020-04-16)

This version of LiveView comes with an overhaul of the testing module, more closely integrating your LiveView template with your LiveView events. For example, in previous versions, you could write this test:
 render_click(live_view, "increment_by", %{by: 1})
However, there is no guarantee that there is any element on the page with a phx-click="increment" attribute and phx-value-by set to 1. With LiveView 0.12.0, you can now write:
 live_view
 |> element("#term .buttons a", "Increment")
 |> render_click()
The new implementation will check there is a button at #term .buttons a, with "Increment" as text, validate that it has a phx-click attribute and automatically submit to it with all relevant phx-value entries. This brings us closer to integration/acceptance test frameworks without any of the overhead and complexities of running a headless browser.

 Enhancements

	Add assert_patch/3 and assert_patched/2 for asserting on patches
	Add follow_redirect/3 to automatically follow redirects from render_* events
	Add phx-trigger-action form annotation to trigger an HTTP form submit on next DOM patch

 Bug fixes

	Fix phx-target @myself targeting a sibling LiveView component with the same component ID
	Fix phx:page-loading-stop firing before the DOM patch has been performed
	Fix phx-update="prepend" failing to properly patch the DOM when the same ID is updated back to back
	Fix redirects on mount failing to copy flash

 Backwards incompatible changes

	phx-error-for has been removed in favor of phx-feedback-for. phx-feedback-for will set a phx-no-feedback class whenever feedback has to be hidden

	Phoenix.LiveViewTest.children/1 has been renamed to Phoenix.LiveViewTest.live_children/1

	Phoenix.LiveViewTest.find_child/2 has been renamed to Phoenix.LiveViewTest.find_live_child/2

	Phoenix.LiveViewTest.assert_redirect/3 no longer matches on the flash, instead it returns the flash

	Phoenix.LiveViewTest.assert_redirect/3 no longer matches on the patch redirects, use assert_patch/3 instead

	Phoenix.LiveViewTest.assert_remove/3 has been removed. If the LiveView crashes, it will cause the test to crash too

	Passing a path with DOM IDs to render_* test functions is deprecated. Furthermore, they now require a phx-target="<%= @id %>" on the given DOM ID:
<div id="component-id" phx-target="component-id">
 ...
</div>
html = render_submit([view, "#component-id"], event, value)
In any case, this API is deprecated and you should migrate to the new element based API.

 0.11.1 (2020-04-08)

 Bug fixes

	Fix readonly states failing to be undone after an empty diff
	Fix dynamically added child failing to be joined by the client
	Fix teardown bug causing stale client sessions to attempt a rejoin on reconnect
	Fix orphaned prepend/append content across joins
	Track unless in LiveEEx engine

 Backwards incompatible changes

	render_event/render_click and friends now expect a DOM ID selector to be given when working with components. For example, instead of render_click([live, "user-13"]), you should write render_click([live, "#user-13"]), mirroring the phx-target API.
	Accessing the socket assigns directly @socket.assigns[...] in a template will now raise the exception Phoenix.LiveView.Socket.AssignsNotInSocket. The socket assigns are available directly inside the template as LiveEEx assigns, such as @foo and @bar. Any assign access should be done using the assigns in the template where proper change tracking takes place.

 Enhancements

	Trigger debounced events immediately on input blur
	Support defaults option on LiveSocket constructor to configure default phx-debounce and phx-throttle values, allowing <input ... phx-debounce>
	Add detail key to click event metadata for detecting double/triple clicks

 0.11.0 (2020-04-06)

 Backwards incompatible changes

	Remove socket.assigns during render to avoid change tracking bugs. If you were previously relying on passing @socket to functions then referencing socket assigns, pass the explicit assign instead to your functions from the template.

	Removed assets/css/live_view.css. If you want to show a progress bar then in app.css, replace
- @import "../../../../deps/phoenix_live_view/assets/css/live_view.css";
+ @import "../node_modules/nprogress/nprogress.css";
and add nprogress to assets/package.json. Full details in the Progress animation guide

 Bug fixes

	Fix client issue with greater than two levels of LiveView nesting
	Fix bug causing entire LiveView to be re-rendering with only a component changed
	Fix issue where rejoins would not trigger phx:page-loading-stop

 Enhancements

	Support deep change tracking so @foo.bar only executes and diffs when bar changes
	Add @myself assign, to allow components to target themselves instead of relying on a DOM ID, for example: phx-target="<%= @myself %>"
	Optimize various client rendering scenarios for faster DOM patching
of components and append/prepended content
	Add enableProfiling() and disableProfiling() to LiveSocket for client performance profiling to aid the development process
	Allow LiveViews to be rendered inside LiveComponents
	Add support for clearing flash inside components

 0.10.0 (2020-03-18)

 Backwards incompatible changes

	Rename socket assign @live_view_module to @live_module
	Rename socket assign @live_view_action to @live_action
	LiveView no longer uses the default app layout and put_live_layout is no longer supported. Instead, use put_root_layout. Note, however, that the layout given to put_root_layout must use @inner_content instead of <%= render(@view_module, @view_template, assigns) %> and that the root layout will also be used by regular views. Check the Live Layouts section of the docs.

 Bug fixes

	Fix loading states causing nested LiveViews to be removed during live navigation
	Only trigger phx-update="ignore" hook if data attributes have changed
	Fix LiveEEx fingerprint bug causing no diff to be sent in certain cases

 Enhancements

	Support collocated templates where an .html.leex template of the same basename of the LiveView will be automatically used for render/1
	Add live_title_tag/2 helper for automatic prefix/suffix on @page_title updates

 0.9.0 (2020-03-08)

 Bug fixes

	Do not set ignored inputs and buttons as readonly
	Only decode paths in URIs
	Only destroy main descendents when replacing main
	Fix sibling component patches when siblings at same root DOM tree
	Do not pick the layout from :use on child LiveViews
	Respect when the layout is set to false in the router and on mount
	Fix sibling component patch when component siblings lack a container
	Make flash optional (i.e. LiveView will still work if you don't fetch_flash before)

 Enhancements

	Raise if :flash is given as an assign
	Support user-defined metadata in router
	Allow the router to be accessed as socket.router
	Allow MFArgs as the :session option in the live router macro
	Trigger page loading event when main LV errors
	Automatically clear the flash on live navigation examples - only the newly assigned flash is persisted

 0.8.1 (2020-02-27)

 Enhancements

	Support phx-disable-with on live redirect and live patch links

 Bug Fixes

	Fix focus issue on date and time inputs
	Fix LiveViews failing to mount when page restored from back/forward cache following a redirect on the server
	Fix IE coercing undefined to string when issuing pushState
	Fix IE error when focused element is null
	Fix client error when using components and live navigation where a dynamic template is rendered
	Fix latent component diff causing error when component removed from DOM before patch arrives
	Fix race condition where a component event received on the server for a component already removed by the server raised a match error

 0.8.0 (2020-02-22)

 Backwards incompatible changes

	Remove Phoenix.LiveView.Flash in favor of :fetch_live_flash imported by Phoenix.LiveView.Router
	Live layout must now access the child contents with @inner_content instead of invoking the LiveView directly
	Returning :stop tuples from LiveView mount or handle_[params|call|cast|info|event] is no longer supported. LiveViews are stopped when issuing a redirect or push_redirect

 Enhancements

	Add put_live_layout plug to put the root layout used for live routes
	Allow redirect and push_redirect from mount
	Use acknowledgement tracking to avoid patching inputs until the server has processed the form event
	Add css loading states to all phx bound elements with event specific css classes
	Dispatch phx:page-loading-start and phx:page-loading-stop on window for live navigation, initial page loads, and form submits, for user controlled page loading integration
	Allow any phx bound element to specify phx-page-loading to dispatch loading events above when the event is pushed
	Add client side latency simulator with new enableLatencySim(milliseconds) and disableLatencySim()
	Add enableDebug() and disableDebug() to LiveSocket for ondemand browser debugging from the web console
	Do not connect LiveSocket WebSocket or bind client events unless a LiveView is found on the page
	Add transport_pid/1 to return the websocket transport pid when the socket is connected

 Bug Fixes

	Fix issue where a failed mount from a live_redirect would reload the current URL instead of the attempted new URL

 0.7.1 (2020-02-13)

 Bug Fixes

	Fix checkbox bug failing to send phx-change event to the server in certain cases
	Fix checkbox bug failing to maintain checked state when a checkbox is programmatically updated by the server
	Fix select bug in Firefox causing the highlighted index to jump when a patch is applied during hover state

 0.7.0 (2020-02-12)

 Backwards incompatible changes

	live_redirect was removed in favor of push_patch (for updating the URL and params of the current LiveView) and push_redirect (for updating the URL to another LiveView)
	live_link was removed in favor of live_patch (for updating the URL and params of the current LiveView) and live_redirect (for updating the URL to another LiveView)
	Phoenix.LiveViewTest.assert_redirect no longer accepts an anonymous function in favor of executing the code
prior to asserting the redirects, just like assert_receive.

 Enhancements

	Support @live_view_action in LiveViews to simplify tracking of URL state
	Recovery form input data automatically on disconnects or crash recovery
	Add phx-auto-recover form binding for specialized recovery
	Scroll to top of page while respecting anchor hash targets on live_patch and live_redirect
	Add phx-capture-click to use event capturing to bind a click event as it propagates inwards from the target
	Revamp flash support so it works between static views, live views, and components
	Add phx-key binding to scope phx-window-keydown and phx-window-keyup events

 Bug Fixes

	Send phx-value-* on key events
	Trigger updated hook callbacks on phx-update="ignore" container when the container's attributes have changed
	Fix nested phx-update="append" raising ArgumentError in LiveViewTest
	Fix updates not being applied in rare cases where an leex template is wrapped in an if expression

 0.6.0 (2020-01-22)

 Deprecations

	LiveView mount/2 has been deprecated in favor of mount/3. The params are now passed as the first argument to mount/3, followed by the session and socket.

 Backwards incompatible changes

	The socket session now accepts only string keys

 Enhancements

	Allow window beforeunload to be cancelled without losing websocket connection

 Bug Fixes

	Fix handle_params not decoding URL path parameters properly
	Fix LiveViewTest error when routing at root path
	Fix URI encoded params failing to be decoded in handle_params
	Fix component target failing to locate correct component when the target is on an input tag

 0.5.2 (2020-01-17)

 Bug Fixes

	Fix optimization bug causing some DOM nodes to be removed on updates

 0.5.1 (2020-01-15)

 Bug Fixes

	Fix phx-change bug causing phx-target to not be used

 0.5.0 (2020-01-15)

LiveView now makes the connection session automatically available in LiveViews. However, to do so, you need to configure your endpoint accordingly, otherwise LiveView will fail to connect.
The steps are:
	Find plug Plug.Session, ... in your endpoint.ex and move the options ... to a module attribute:
 @session_options [
 ...
]

	Change the plug Plug.Session to use said attribute:
 plug Plug.Session, @session_options

	Also pass the @session_options to your LiveView socket:
 socket "/live", Phoenix.LiveView.Socket,
 websocket: [connect_info: [session: @session_options]]

	You should define the CSRF meta tag inside <head> in your layout, before app.js is included:
 <meta name="csrf-token" content={Plug.CSRFProtection.get_csrf_token()} />
 <script type="text/javascript" src="<%= Routes.static_path(@conn, "/js/app.js") %>"></script>

	Then in your app.js:
 let csrfToken = document.querySelector("meta[name='csrf-token']").getAttribute("content");
 let liveSocket = new LiveSocket("/live", Socket, {params: {_csrf_token: csrfToken}});

Also note that the session from now on will have string keys. LiveView will warn if atom keys are used.

 Enhancements

	Respect new tab behavior in live_link
	Add beforeUpdate and beforeDestroy JS hooks
	Make all assigns defined on the socket mount available on the layout on first render
	Provide support for live layouts with new :layout option
	Detect duplicate IDs on the front-end when DEBUG mode is enabled
	Automatically forward the session to LiveView
	Support "live_socket_id" session key for identifying (and disconnecting) LiveView sockets
	Add support for hibernate_after on LiveView processes
	Support redirecting to full URLs on live_redirect and redirect
	Add offsetX and offsetY to click event metadata
	Allow live_link and live_redirect to exist anywhere in the page and it will always target the main LiveView (the one defined at the router)

 Backwards incompatible changes

	phx-target="window" has been removed in favor of phx-window-keydown, phx-window-focus, etc, and the phx-target binding has been repurposed for targeting LiveView and LiveComponent events from the client
	Phoenix.LiveView no longer defined live_render and live_link. These functions have been moved to Phoenix.LiveView.Helpers which can now be fully imported in your views. In other words, replace import Phoenix.LiveView, only: [live_render: ..., live_link: ...] by import Phoenix.LiveView.Helpers

 0.4.1 (2019-11-07)

 Bug Fixes

	Fix bug causing blurred inputs

 0.4.0 (2019-11-07)

 Enhancements

	Add Phoenix.LiveComponent to compartmentalize state, markup, and events in LiveView
	Handle outdated clients by refreshing the page with jitter when a valid, but outdated session is detected
	Only dispatch live link clicks to router LiveView
	Refresh the page for graceful error recovery on failed mount when the socket is in a connected state

 Bug Fixes

	Fix phx-hook destroyed callback failing to be called in certain cases
	Fix back/forward bug causing LiveView to fail to remount

 0.3.1 (2019-09-23)

 Backwards incompatible changes

	live_isolated in tests no longer requires a router and a pipeline (it now expects only 3 arguments)
	Raise if handle_params is used on a non-router LiveView

 Bug Fixes

	[LiveViewTest] Fix function clause errors caused by HTML comments

 0.3.0 (2019-09-19)

 Enhancements

	Add phx-debounce and phx-throttle bindings to rate limit events

 Backwards incompatible changes

	IE11 support now requires two additional polyfills, mdn-polyfills/CustomEvent and mdn-polyfills/String.prototype.startsWith

 Bug Fixes

	Fix IE11 support caused by unsupported getAttributeNames lookup
	Fix Floki dependency compilation warnings

 0.2.1 (2019-09-17)

 Bug Fixes

	[LiveView.Router] Fix module concat failing to build correct layout module when using custom namespace
	[LiveViewTest] Fix phx-update append/prepend containers not building proper DOM content
	[LiveViewTest] Fix phx-update append/prepend containers not updating existing child containers with matching IDs

 0.2.0 (2019-09-12)

 Enhancements

	[LiveView] Add new :container option to use Phoenix.LiveView
	[LiveViewTest] Add live_isolated test helper for testing LiveViews which are not routable

 Backwards incompatible changes

	Replace configure_temporary_assigns/2 with 3-tuple mount return, supporting a :temporary_assigns key
	Do not allow redirect/live_redirect on mount nor in child live views
	All phx-update containers now require a unique ID
	LiveSocket JavaScript constructor now requires explicit dependency injection of Phoenix Socket constructor. For example:

import {Socket} from "phoenix"
import LiveSocket from "phoenix_live_view"

let liveSocket = new LiveSocket("/live", Socket, {...})

 Bug Fixes

	Fix phx-update=append/prepend failing to join new nested live views or wire up new phx-hooks
	Fix number input handling causing some browsers to reset form fields on invalid inputs
	Fix multi-select decoding causing server error
	Fix multi-select change tracking failing to submit an event when a value is deselected
	Fix live redirect loop triggered under certain scenarios
	Fix params failing to update on re-mounts after live_redirect
	Fix blur event metadata being sent with type of "focus"

 0.1.2 (2019-08-28)

 Backwards incompatible changes

	phx-value has no effect, use phx-value-* instead
	The :path_params key in session has no effect (use handle_params in LiveView instead)

 0.1.1 (2019-08-27)

 Enhancements

	Use optimized insertAdjacentHTML for faster append/prepend and proper css animation handling
	Allow for replacing previously appended/prepended elements by replacing duplicate IDs during append/prepend instead of adding new DOM nodes

 Bug Fixes

	Fix duplicate append/prepend updates when parent content is updated
	Fix JS hooks not being applied for appending and prepended content

 0.1.0 (2019-08-25)

 Enhancements

	The LiveView handle_in/3 callback now receives a map of metadata about the client event
	For phx-change events, handle_in/3 now receives a "_target" param representing the keyspace of the form input name which triggered the change
	Multiple values may be provided for any phx binding by using the phx-value- prefix, such as phx-value-myval1, phx-value-myval2, etc
	Add control over the DOM patching via phx-update, which can be set to "replace", "append", "prepend" or "ignore"

 Backwards incompatible changes

	phx-ignore was renamed to phx-update="ignore"

Welcome

Welcome to Phoenix LiveView documentation. Phoenix LiveView enables
rich, real-time user experiences with server-rendered HTML. A general
overview of LiveView and its benefits is available in our README.

 What is a LiveView?

LiveViews are processes that receive events, update their state,
and render updates to a page as diffs.
The LiveView programming model is declarative: instead of saying
"once event X happens, change Y on the page", events in LiveView
are regular messages which may cause changes to the state. Once
the state changes, the LiveView will re-render the relevant parts of
its HTML template and push it to the browser, which updates the page
in the most efficient manner.
LiveView state is nothing more than functional and immutable
Elixir data structures. The events are either internal application messages
(usually emitted by Phoenix.PubSub) or sent by the client/browser.
Every LiveView is first rendered statically as part of a regular
HTTP request, which provides quick times for "First Meaningful
Paint", in addition to helping search and indexing engines.
A persistent connection is then established between the client and
server. This allows LiveView applications to react faster to user
events as there is less work to be done and less data to be sent
compared to stateless requests that have to authenticate, decode, load,
and encode data on every request.

 Example

LiveView is included by default in Phoenix applications.
Therefore, to use LiveView, you must have already installed Phoenix
and created your first application. If you haven't done so,
check Phoenix' installation guide
to get started.
The behaviour of a LiveView is outlined by a module which implements
a series of functions as callbacks. Let's see an example. Write the
file below to lib/my_app_web/live/thermostat_live.ex:
defmodule MyAppWeb.ThermostatLive do
 # In Phoenix v1.6+ apps, the line is typically: use MyAppWeb, :live_view
 use Phoenix.LiveView

 def render(assigns) do
 ~H"""
 Current temperature: <%= @temperature %>°F
 <button phx-click="inc_temperature">+</button>
 """
 end

 def mount(_params, _session, socket) do
 temperature = 70 # Let's assume a fixed temperature for now
 {:ok, assign(socket, :temperature, temperature)}
 end

 def handle_event("inc_temperature", _params, socket) do
 {:noreply, update(socket, :temperature, &(&1 + 1))}
 end
end
The module above defines three functions (they are callbacks
required by LiveView). The first one is render/1,
which receives the socket assigns and is responsible for returning
the content to be rendered on the page. We use the ~H sigil to define
a HEEx template, which stands for HTML+EEx. They are an extension of
Elixir's builtin EEx templates, with support for HTML validation, syntax-based
components, smart change tracking, and more. You can learn more about
the template syntax in Phoenix.Component.sigil_H/2 (note
Phoenix.Component is automatically imported when you use Phoenix.LiveView).
The data used on rendering comes from the mount callback. The
mount callback is invoked when the LiveView starts. In it, you
can access the request parameters, read information stored in the
session (typically information which identifies who is the current
user), and a socket. The socket is where we keep all state, including
assigns. mount proceeds to assign a default temperature to the socket.
Because Elixir data structures are immutable, LiveView APIs often
receive the socket and return an updated socket. Then we return
{:ok, socket} to signal that we were able to mount the LiveView
successfully. After mount, LiveView will render the page with the
values from assigns and send it to the client.
If you look at the HTML rendered, you will notice there is a button
with a phx-click attribute. When the button is clicked, a
"inc_temperature" event is sent to the server, which is matched and
handled by the handle_event callback. This callback updates the socket
and returns {:noreply, socket} with the updated socket.
handle_* callbacks in LiveView (and in Elixir in general) are
invoked based on some action, in this case, the user clicking a button.
The {:noreply, socket} return means there is no additional replies
sent to the browser, only that a new version of the page is rendered.
LiveView then computes diffs and sends them to the client.
Now we are ready to render our LiveView. You can serve the LiveView
directly from your router:
defmodule MyAppWeb.Router do
 use Phoenix.Router
 import Phoenix.LiveView.Router

 scope "/", MyAppWeb do
 live "/thermostat", ThermostatLive
 end
end
Once the LiveView is rendered, a regular HTML response is sent. In your
app.js file, you should find the following:
import {Socket} from "phoenix"
import {LiveSocket} from "phoenix_live_view"

let csrfToken = document.querySelector("meta[name='csrf-token']").getAttribute("content")
let liveSocket = new LiveSocket("/live", Socket, {params: {_csrf_token: csrfToken}})
liveSocket.connect()
Now the JavaScript client will connect over WebSockets and mount/3 will be invoked
inside a spawned LiveView process.

 Parameters and session

The mount callback receives three arguments: the request parameters, the session, and the socket.
The parameters can be used to read information from the URL. For example, assuming you have a Thermostat module defined somewhere that can read this information based on the house name, you could write this:
def mount(%{"house" => house}, _session, socket) do
 temperature = Thermostat.get_house_reading(house)
 {:ok, assign(socket, :temperature, temperature)}
end
And then in your router:
live "/thermostat/:house", ThermostatLive
The session retrieves information from a signed (or encrypted) cookie. This is where you can store authentication information, such as current_user_id:
def mount(_params, %{"current_user_id" => user_id}, socket) do
 temperature = Thermostat.get_user_reading(user_id)
 {:ok, assign(socket, :temperature, temperature)}
end
Phoenix comes with built-in authentication generators. See mix phx.gen.auth.

Most times, in practice, you will use both:
def mount(%{"house" => house}, %{"current_user_id" => user_id}, socket) do
 temperature = Thermostat.get_house_reading(user_id, house)
 {:ok, assign(socket, :temperature, temperature)}
end
In other words, you want to read the information about a given house, as long as the user has access to it.

 Bindings

Phoenix supports DOM element bindings for client-server interaction. For
example, to react to a click on a button, you would render the element:
<button phx-click="inc_temperature">+</button>
Then on the server, all LiveView bindings are handled with the handle_event/3
callback, for example:
def handle_event("inc_temperature", _value, socket) do
 {:noreply, update(socket, :temperature, &(&1 + 1))}
end
To update UI state, for example, to open and close dropdowns, switch tabs,
etc, LiveView also supports JS commands (Phoenix.LiveView.JS), which
execute directly on the client without reaching the server. To learn more,
see our bindings page for a complete list of all LiveView
bindings as well as our JavaScript interoperability guide.
LiveView has built-in support for forms, including uploads and association
management. See Phoenix.Component.form/1 as a starting point and
Phoenix.Component.inputs_for/1 for working with associations.
The Uploads and Form bindings guides provide
more information about advanced features.

 Navigation

LiveView provides functionality to allow page navigation using the
browser's pushState API.
With live navigation, the page is updated without a full page reload.
You can either patch the current LiveView, updating its URL, or
navigate to a new LiveView. You can learn more about them in the
Live Navigation guide.

 Generators

Phoenix v1.6 and later includes code generators for LiveView. If you want to see
an example of how to structure your application, from the database all the way up
to LiveViews, run the following:
mix phx.gen.live Blog Post posts title:string body:text
For more information, run mix help phx.gen.live.
For authentication, with built-in LiveView support, run mix phx.gen.auth Account User users.

 Compartmentalize state, markup, and events in LiveView

LiveView supports two extension mechanisms: function components, provided by
HEEx templates, and stateful components.
Function components are any function that receives an assigns map, similar
to render(assigns) in our LiveView, and returns a ~H template. For example:
def weather_greeting(assigns) do
 ~H"""
 <div title="My div" class={@class}>
 <p>Hello <%= @name %></p>
 <MyApp.Weather.city name="Kraków"/>
 </div>
 """
end
You can learn more about function components in the Phoenix.Component
module. At the end of the day, they are a useful mechanism to reuse markup
in your LiveViews.
However, sometimes you need to compartmentalize or reuse more than markup.
Perhaps you want to move part of the state or part of the events in your
LiveView to a separate module. For these cases, LiveView provides
Phoenix.LiveComponent, which are rendered using
live_component/1:
<.live_component module={UserComponent} id={user.id} user={user} />
Components have their own mount/3 and handle_event/3 callbacks, as
well as their own state with change tracking support. Components are also
lightweight as they "run" in the same process as the parent LiveView.
However, this means an error in a component would cause the whole view to
fail to render. See Phoenix.LiveComponent for a complete rundown on components.
Finally, if you want complete isolation between parts of a LiveView, you can
always render a LiveView inside another LiveView by calling
live_render/3. This child LiveView
runs in a separate process than the parent, with its own callbacks. If a child
LiveView crashes, it won't affect the parent. If the parent crashes, all children
are terminated.
When rendering a child LiveView, the :id option is required to uniquely
identify the child. A child LiveView will only ever be rendered and mounted
a single time, provided its ID remains unchanged. To force a child to re-mount
with new session data, a new ID must be provided.
Given that a LiveView runs on its own process, it is an excellent tool for creating
completely isolated UI elements, but it is a slightly expensive abstraction if
all you want is to compartmentalize markup or events (or both).
To sum it up:
	use Phoenix.Component to compartmentalize/reuse markup
	use Phoenix.LiveComponent to compartmentalize state, markup, and events
	use nested Phoenix.LiveView to compartmentalize state, markup, events, and error isolation

 Guides

This documentation is split into two categories. We have the API
reference for all LiveView modules, that's where you will learn
more about Phoenix.Component, Phoenix.LiveView, and so on.
LiveView also has many guides to help you on your journey,
split on server-side and client-side:

 Server-side

These guides focus on server-side functionality:
	Assigns and HEEx templates
	Error and exception handling
	Live Layouts
	Live Navigation
	Security considerations of the LiveView model
	Telemetry
	Uploads
	Using Gettext for internationalization

 Client-side

These guides focus on LiveView bindings and client-side integration:
	Bindings
	Form bindings
	DOM patching and temporary assigns
	JavaScript interoperability
	Uploads (External)

Assigns and HEEx templates

All of the data in a LiveView is stored in the socket, which is a server
side struct called Phoenix.LiveView.Socket. Your own data is stored
under the assigns key of said struct. The server data is never shared
with the client beyond what your template renders.
Phoenix template language is called HEEx (HTML+EEx). EEx is Embedded
Elixir, an Elixir string template engine. Those templates
are either files with the .heex extension or they are created
directly in source files via the ~H sigil. You can learn more about
the HEEx syntax by checking the docs for the ~H sigil.
The Phoenix.Component.assign/2 and Phoenix.Component.assign/3
functions help store those values. Those values can be accessed
in the LiveView as socket.assigns.name but they are accessed
inside HEEx templates as @name.
In this section, we are going to cover how LiveView minimizes
the payload over the wire by understanding the interplay between
assigns and templates.

 Change tracking

When you first render a .heex template, it will send all of the
static and dynamic parts of the template to the client. Imagine the
following template:
<h1><%= expand_title(@title) %></h1>
It has two static parts, <h1> and </h1> and one dynamic part
made of expand_title(@title). Further rendering of this template
won't resend the static parts and it will only resend the dynamic
part if it changes.
The tracking of changes is done via assigns. If the @title assign
changes, then LiveView will execute expand_title(@title) and send
the new content. If @title is the same, nothing is executed and
nothing is sent.
Change tracking also works when accessing map/struct fields.
Take this template:
<div id={"user_#{@user.id}"}>
 <%= @user.name %>
</div>
If the @user.name changes but @user.id doesn't, then LiveView
will re-render only @user.name and it will not execute or resend @user.id
at all.
The change tracking also works when rendering other templates as
long as they are also .heex templates:
<%= render "child_template.html", assigns %>
Or when using function components:
<.show_name name={@user.name} />
The assign tracking feature also implies that you MUST avoid performing
direct operations in the template. For example, if you perform a database
query in your template:
<%= for user <- Repo.all(User) do %>
 <%= user.name %>
<% end %>
Then Phoenix will never re-render the section above, even if the number of
users in the database changes. Instead, you need to store the users as
assigns in your LiveView before it renders the template:
assign(socket, :users, Repo.all(User))
Generally speaking, data loading should never happen inside the template,
regardless if you are using LiveView or not. The difference is that LiveView
enforces this best practice.

 Pitfalls

There are some common pitfalls to keep in mind when using the ~H sigil
or .heex templates inside LiveViews.
Due to the scope of variables, LiveView has to disable change tracking
whenever variables are used in the template, with the exception of
variables introduced by Elixir block constructs such as case,
for, if, and others. Therefore, you must avoid code like
this in your HEEx templates:
<% some_var = @x + @y %>
<%= some_var %>
Instead, use a function:
<%= sum(@x, @y) %>
Similarly, do not define variables at the top of your render function
for LiveViews or LiveComponents:
def render(assigns) do
 sum = assigns.x + assigns.y

 ~H"""
 <%= sum %>
 """
end
Instead explicitly precompute the assign outside of render:
assign(socket, sum: socket.assigns.x + socket.assigns.y)
Unlike LiveView's render/1 callback, a function component can
modify the assigns it receives via the assign/2, assign/3,
assign_new/3, and update/3 functions. Therefore, you can assign
the computed values before declaring your template:
attr :x, :integer, required: true
attr :y, :integer, required: true
def sum_component(assigns) do
 assigns = assign(assigns, sum: assigns.x + assigns.y)

 ~H"""
 <%= @sum %>
 """
end
Generally speaking, avoid accessing variables inside HEEx templates, as code that
access variables is always executed on every render. This also applies to the
assigns variable. The exception are variables introduced by Elixir's block
constructs. For example, accessing the post variable defined by the comprehension
below works as expected:
<%= for post <- @posts do %>
 ...
<% end %>
When talking about variables, it is also worth discussing the assigns
special variable. Every time you use the ~H sigil, you must define an
assigns variable, which is also available on every .heex template.
Sometimes you might want to pass all assigns from one function component to
another. For example, imagine you have a complex card component with
header, content and footer section. You might refactor your component
into three smaller components internally:
def card(assigns) do
 ~H"""
 <div class="card">
 <.card_header {assigns} />
 <.card_body {assigns} />
 <.card_footer {assigns} />
 </div>
 """
end

defp card_header(assigns) do
 ...
end

defp card_body(assigns) do
 ...
end

defp card_footer(assigns) do
 ...
end
Because of the way function components handle attributes, the above code will
not perform change tracking and it will always re-render all three components
on every change.
Generally, you should avoid passing all assigns and instead be explicit about
which assigns the child components need:
def card(assigns) do
 ~H"""
 <div class="card">
 <.card_header title={@title} class={@title_class} />
 <.card_body>
 <%= render_slot(@inner_block) %>
 </.card_body>
 <.card_footer on_close={@on_close} />
 </div>
 """
end
If you really need to pass all assigns you should instead use the regular
function call syntax:
def card(assigns) do
 ~H"""
 <div class="card">
 <%= card_header(assigns) %>
 <%= card_body(assigns) %>
 <%= card_footer(assigns) %>
 </div>
 """
end
This ensures that the change tracking information from the parent component
is passed to each child component, only re-rendering what is necessary.
However, generally speaking, it is best to avoid passing assigns altogether
and instead let LiveView figure out the best way to track changes.
To sum up:
	Avoid defining local variables inside HEEx templates, except within Elixir's constructs

	Avoid passing or accessing the assigns variable inside HEEx templates

Deployments

One of the questions that arise from LiveView stateful model is what considerations are necessary when deploying a new version of LiveView.
First off, whenever LiveView disconnects, it will automatically attempt to reconnect to the server using exponential back-off. This means it will try immediately, then wait 2s and try again, then 5s and so on. If you are deploying, this typically means the next reconnection will immediately succeed and your load balancer will automatically redirect to the new servers.
However, your LiveView may still have state that will be lost in this transition. How to deal with it? The good news is that there are a series of practices you can follow that will not only help with deployments but it will improve your application in general.
	Keep state in the query parameters when appropriate. For example, if your application has tabs and the user clicked a tab, instead of using phx-click and Phoenix.LiveView.handle_event/3 to manage it, you should implement it using <.link patch={...}> passing the tab name as parameter. You will then receive the new tab name Phoenix.LiveView.handle_params/3 which will set the relevant assign to choose which tab to display. You can even define specific URLs for each tab in your application router. By doing this, you will reduce the amount of server state, make tab navigation sharable via links, improving search engine indexing, and more.

	Consider storing other relevant state in the database. For example, if you are building a chat app and you want to store which messages have been read, you can store so in the database. Once the page is loaded, you retrieve the index of the last read message. This makes the application more robust, allow data to be synchronized across devices, etc.

	If your application uses forms (which is most likely true), keep in mind that Phoenix perform automatic form recovery: in case of disconnections, Phoenix will collect the form data and resubmit it on reconnection. This mechanism works out of the box for most forms but you may want to customize it or test it for your most complex forms. See the relevant section in the "Form bindings" document to learn more.

The idea is that: if you follow the practices above, most of your state is already handled within your app and therefore deployments should not bring additional concerns. Not only that, it will bring overall benefits to your app such as indexing, link sharing, device sharing, and so on.
If you really have complex state that cannot be immediately handled, then you may need to resort to special strategies. This may be persisting "old" state to Redis/S3/Database and loading the new state on the new connections. Or you may take special care when migrating connections (for example, if you are building a game, you may want to wait for on-going sessions to finish before turning down the old server while routing new sessions to the new ones). Such cases will depend on your requirements (and they would likely exist regardless of which application stack you are using).

Error and exception handling

As with any other Elixir code, exceptions may happen during the LiveView
life-cycle. In this section we will describe how LiveView reacts to errors
at different stages.

 Expected scenarios

In this section, we will talk about error cases that you expect to happen
within your application. For example, a user filling in a form with invalid
data is expected. In a LiveView, we typically handle those cases by storing
a change in the LiveView state, which causes the LiveView to be re-rendered
with the error message.
We may also use flash messages for this. For example, imagine you have a
page to manage all "Team members" in an organization. However, if there is
only one member left in the organization, they should not be allowed to
leave. You may want to handle this by using flash messages:
if MyApp.Org.leave(socket.assigns.current_org, member) do
 {:noreply, socket}
else
 {:noreply, put_flash(socket, :error, "last member cannot leave organization")}
end
However, one may argue that, if the last member of an organization cannot
leave it, it may be better to not even show the "Leave" button in the UI
when the organization has only one member.
Given the button does not appear in the UI, triggering the "leave" when
the organization has now only one member is an unexpected scenario. This
means we can probably rewrite the code above to:
true = MyApp.Org.leave(socket.assigns.current_org, member)
{:noreply, socket}
If leave returns false by any chance, it will just raise. Or you can
even provide a leave! function that raises a specific exception:
MyApp.Org.leave!(socket.assigns.current_org, member)
{:noreply, socket}
However, what will happen with a LiveView in case of exceptions?
Let's talk about unexpected scenarios.

 Unexpected scenarios

Elixir developers tend to write assertive code. This means that, if we
expect leave to always return true, we can explicitly match on its
result, as we did above:
true = MyApp.Org.leave(socket.assigns.current_org, member)
{:noreply, socket}
If leave fails and returns false, an exception is raised. It is common
for Elixir developers to use exceptions for unexpected scenarios in their
Phoenix applications.
For example, if you are building an application where a user may belong to
one or more organizations, when accessing the organization page, you may want to
check that the user has access to it like this:
organizations_query = Ecto.assoc(socket.assigns.current_user, :organizations)
Repo.get!(organizations_query, params["org_id"])
The code above builds a query that returns all organizations that belongs to
the current user and then validates that the given "org_id" belongs to the
user. If there is no such "org_id" or if the user has no access to it, an
Ecto.NoResultsError exception is raised.
During a regular controller request, this exception will be converted to a
404 exception and rendered as a custom error page, as
detailed here.
To understand how a LiveView reacts to exceptions, we need to consider two
scenarios: exceptions on mount and during any event.

 Common scenarios

Sometimes, it is desirable to have error handling in multiple LiveViews. In
this case, it is possible to check for an @error variable in the templates
and conditionally render if it is set, or to redirect to a separate error page.
However another option is to replace the rendering function using
Phoenix.LiveView.render_with/2 within a callback or hook such as
Phoenix.LiveView.on_mount/1. This allows common error rendering without
requiring a redirect or a check in every template.
For example:
def on_mount(:check_errors, params, _session, socket) when is_map_key(params, "invalid") do
 {:cont, Phoenix.LiveView.render_with(socket, &MyApp.Components.param_error/1)}
end

def on_mount(:check_errors, _params, _session, socket) do
 {:cont, socket}
end

 Exceptions on mount

Given the code on mount runs both on the initial disconnected render and the
connected render, an exception on mount will trigger the following events:
Exceptions during disconnected render:
	An exception on mount is caught and converted to an exception page
by Phoenix error views - pretty much like the way it works with controllers

Exceptions during connected render:
	An exception on mount will crash the LiveView process - which will be logged
	Once the client has noticed the crash during mount, it will fully reload the page
	Reloading the page will start a disconnected render, that will cause mount
to be invoked again and most likely raise the same exception. Except this time
it will be caught and converted to an exception page by Phoenix error views

In other words, LiveView will reload the page in case of errors, making it
fail as if LiveView was not involved in the rendering in the first place.

 Exceptions on events (handle_info, handle_event, etc)

If the error happens during an event, the LiveView process will crash. The client
will notice the error and remount the LiveView - without reloading the page. This
is enough to update the page and show the user the latest information.
For example, let's say two users try to leave the organization at the same time.
In this case, both of them see the "Leave" button, but our leave function call
will succeed only for one of them:
true = MyApp.Org.leave(socket.assigns.current_org, member)
{:noreply, socket}
When the exception raises, the client will remount the LiveView. Once you remount,
your code will now notice that there is only one user in the organization and
therefore no longer show the "Leave" button. In other words, by remounting,
we often update the state of the page, allowing exceptions to be automatically
handled.
Note that the choice between conditionally checking on the result of the leave
function with an if, or simply asserting it returns true, is completely
up to you. If the likelihood of everyone leaving the organization at the same
time is low, then you may as well treat it as an unexpected scenario. Although
other developers will be more comfortable by explicitly handling those cases.
In both scenarios, LiveView has you covered.

Live layouts

From Phoenix v1.7, your application is made of two layouts:
	the root layout - this is a layout used by both LiveView and
regular views. This layout typically contains the <html>
definition alongside the head and body tags. Any content defined
in the root layout will remain the same, even as you live navigate
across LiveViews. The root layout is typically declared on the
router with put_root_layout and defined as "root.html.heex"
in your layouts folder

	the app layout - this is the default application layout which
is rendered on both regular HTTP requests and LiveViews.
It defaults to "app.html.heex"

Overall, those layouts are found in components/layouts and are
embedded within MyAppWeb.Layouts.
All layouts must call <%= @inner_content %> to inject the
content rendered by the layout.

 Root layout

The "root" layout is rendered only on the initial request and
therefore it has access to the @conn assign. The root layout
is typically defined in your router:
plug :put_root_layout, html: {MyAppWeb.Layouts, :root}
The root layout can also be set via the :root_layout option
in your router via Phoenix.LiveView.Router.live_session/2.

 Application layout

The "app.html.heex" layout is rendered with either @conn or
@socket. Both Controllers and LiveViews explicitly define
the default layouts they will use. See the def controller
and def live_view definitions in your MyAppWeb to learn how
it is included.
For LiveViews, the default layout can be overridden in two different
ways for flexibility:
	The :layout option in Phoenix.LiveView.Router.live_session/2,
when set, will override the :layout option given via
use Phoenix.LiveView

	The :layout option returned on mount, via {:ok, socket, layout: ...}
will override any previously set layout option

The LiveView itself will be rendered inside the layout wrapped by
the :container tag.

 Updating document title

Because the root layout from the Plug pipeline is rendered outside of
LiveView, the contents cannot be dynamically changed. The one exception
is the <title> of the HTML document. Phoenix LiveView special cases
the @page_title assign to allow dynamically updating the title of the
page, which is useful when using live navigation, or annotating the browser
tab with a notification. For example, to update the user's notification
count in the browser's title bar, first set the page_title assign on
mount:
def mount(_params, _session, socket) do
 socket = assign(socket, page_title: "Latest Posts")
 {:ok, socket}
end
Then access @page_title in the root layout:
<title><%= @page_title %></title>
You can also use the Phoenix.Component.live_title/1 component to support
adding automatic prefix and suffix to the page title when rendered and
on subsequent updates:
<Phoenix.Component.live_title prefix="MyApp – ">
 <%= assigns[:page_title] || "Welcome" %>
</Phoenix.Component.live_title>
Although the root layout is not updated by LiveView, by simply assigning
to page_title, LiveView knows you want the title to be updated:
def handle_info({:new_messages, count}, socket) do
 {:noreply, assign(socket, page_title: "Latest Posts (#{count} new)")}
end
Note: If you find yourself needing to dynamically patch other parts of the
base layout, such as injecting new scripts or styles into the <head> during
live navigation, then a regular, non-live, page navigation should be used
instead. Assigning the @page_title updates the document.title directly,
and therefore cannot be used to update any other part of the base layout.

Live navigation

LiveView provides functionality to allow page navigation using the
browser's pushState API.
With live navigation, the page is updated without a full page reload.
You can trigger live navigation in two ways:
	From the client - this is done by passing either patch={url} or navigate={url}
to the Phoenix.Component.link/1 component.

	From the server - this is done by Phoenix.LiveView.push_patch/2 or Phoenix.LiveView.push_navigate/2.

For example, instead of writing the following in a template:
<.link href={~p"/pages/#{@page + 1}"}>Next</.link>
You would write:
<.link patch={~p"/pages/#{@page + 1}"}>Next</.link>
Or in a LiveView:
{:noreply, push_patch(socket, to: ~p"/pages/#{@page + 1}")}
The "patch" operations must be used when you want to navigate to the
current LiveView, simply updating the URL and the current parameters,
without mounting a new LiveView. When patch is used, the
handle_params/3 callback is
invoked and the minimal set of changes are sent to the client.
See the next section for more information.
The "navigate" operations must be used when you want to dismount the
current LiveView and mount a new one. You can only "navigate" between
LiveViews in the same session. While redirecting, a phx-loading class
is added to the LiveView, which can be used to indicate to the user a
new page is being loaded.
If you attempt to patch to another LiveView or navigate across live sessions,
a full page reload is triggered. This means your application continues to work,
in case your application structure changes and that's not reflected in the navigation.
Here is a quick breakdown:
	<.link href={...}> and redirect/2
are HTTP-based, work everywhere, and perform full page reloads

	<.link navigate={...}> and push_navigate/2
work across LiveViews in the same session. They mount a new LiveView
while keeping the current layout

	<.link patch={...}> and push_patch/2
updates the current LiveView and sends only the minimal diff while also
maintaining the scroll position

 handle_params/3

The handle_params/3 callback is invoked
after mount/3 and before the initial render.
It is also invoked every time <.link patch={...}>
or push_patch/2 are used.
It receives the request parameters as first argument, the url as second,
and the socket as third.
For example, imagine you have a UserTable LiveView to show all users in
the system and you define it in the router as:
live "/users", UserTable
Now to add live sorting, you could do:
<.link patch={path(~p"/users", sort_by: "name")}>Sort by name</.link>
When clicked, since we are navigating to the current LiveView,
handle_params/3 will be invoked.
Remember you should never trust the received params, so you must use the callback to
validate the user input and change the state accordingly:
def handle_params(params, _uri, socket) do
 socket =
 case params["sort_by"] do
 sort_by when sort_by in ~w(name company) -> assign(socket, sort_by: sort_by)
 _ -> socket
 end

 {:noreply, load_users(socket)}
end
Note we returned {:noreply, socket}, where :noreply means no
additional information is sent to the client. As with other handle_*
callbacks, changes to the state inside
handle_params/3 will trigger
a new server render.
Note the parameters given to handle_params/3
are the same as the ones given to mount/3.
So how do you decide which callback to use to load data?
Generally speaking, data should always be loaded on mount/3,
since mount/3 is invoked once per LiveView life-cycle.
Only the params you expect to be changed via
<.link patch={...}> or
push_patch/2 must be loaded on
handle_params/3.
For example, imagine you have a blog. The URL for a single post is:
"/blog/posts/:post_id". In the post page, you have comments and they are paginated.
You use <.link patch={...}> to update the shown
comments every time the user paginates, updating the URL to "/blog/posts/:post_id?page=X".
In this example, you will access "post_id" on mount/3 and
the page of comments on handle_params/3.

 Replace page address

LiveView also allows the current browser URL to be replaced. This is useful when you
want certain events to change the URL but without polluting the browser's history.
This can be done by passing the <.link replace> option to any of the navigation helpers.

 Multiple LiveViews in the same page

LiveView allows you to have multiple LiveViews in the same page by calling
Phoenix.Component.live_render/3 in your templates. However, only
the LiveViews defined directly in your router can use the "Live Navigation"
functionality described here. This is important because LiveViews work
closely with your router, guaranteeing you can only navigate to known
routes.

Security considerations

LiveView begins its life-cycle as a regular HTTP request. Then a stateful
connection is established. Both the HTTP request and the stateful connection
receive the client data via parameters and session.
This means that any session validation must happen both in the HTTP request
(plug pipeline) and the stateful connection (LiveView mount).

 Authentication vs authorization

When speaking about security, there are two terms commonly used:
authentication and authorization. Authentication is about identifying
a user. Authorization is about telling if a user has access to a certain
resource or feature in the system.
In a regular web application, once a user is authenticated, for example by
entering their email and password, or by using a third-party service such as
Google, Twitter, or Facebook, a token identifying the user is stored in the
session, which is a cookie (a key-value pair) stored in the user's browser.
Every time there is a request, we read the value from the session, and, if
valid, we fetch the user stored in the session from the database. The session
is automatically validated by Phoenix and tools like mix phx.gen.auth can
generate the building blocks of an authentication system for you.
Once the user is authenticated, they may perform many actions on the page,
and some of those actions require specific permissions. This is called
authorization and the specific rules often change per application.
In a regular web application, we perform authentication and authorization
checks on every request. Given LiveViews start as a regular HTTP request,
they share the authentication logic with regular requests through plugs.
Once the user is authenticated, we typically validate the sessions on
the mount callback. Authorization rules generally happen on mount
(for instance, is the user allowed to see this page?) and also on
handle_event (is the user allowed to delete this item?).

 Mounting considerations

The mount/3 callback is invoked both on
the initial HTTP mount and when LiveView is connected. Therefore, any
authorization performed during mount will cover all scenarios.
Once the user is authorized and stored in the session, the logic to fetch the user and further authorize its account needs to happen inside LiveView. For example, if you have the following plugs:
plug :ensure_user_authenticated
plug :ensure_user_confirmed
Then the mount/3 callback of your LiveView
should execute those same verifications:
def mount(_params, %{"user_id" => user_id} = _session, socket) do
 socket = assign(socket, current_user: Accounts.get_user!(user_id))

 socket =
 if socket.assigns.current_user.confirmed_at do
 socket
 else
 redirect(socket, to: "/login")
 end

 {:ok, socket}
end
Beginning with v0.17, LiveView includes the on_mount (Phoenix.LiveView.on_mount/1) hook,
which allows you to encapsulate this logic and execute it on every mount,
as you would with plug:
defmodule MyAppWeb.UserLiveAuth do
 import Phoenix.Component
 import Phoenix.LiveView
 alias MyAppWeb.Accounts # from `mix phx.gen.auth`

 def on_mount(:default, _params, %{"user_token" => user_token} = _session, socket) do
 socket =
 assign_new(socket, :current_user, fn ->
 Accounts.get_user_by_session_token(user_token)
 end)

 if socket.assigns.current_user.confirmed_at do
 {:cont, socket}
 else
 {:halt, redirect(socket, to: "/login")}
 end
 end
end
We use assign_new/3. This is a
convenience to avoid fetching the current_user multiple times across
LiveViews.
Now we can use the hook whenever relevant. One option is to specify
the hook in your router under live_session:
live_session :default, on_mount: MyAppWeb.UserLiveAuth do
 # Your routes
end
Alternatively, you can either specify the hook directly in the LiveView:
defmodule MyAppWeb.PageLive do
 use MyAppWeb, :live_view
 on_mount MyAppWeb.UserLiveAuth

 ...
end
If you prefer, you can add the hook to def live_view under MyAppWeb,
to run it on all LiveViews by default:
def live_view do
 quote do
 use Phoenix.LiveView,
 layout: {MyAppWeb.Layouts, :app}

 on_mount MyAppWeb.UserLiveAuth
 unquote(html_helpers())
 end
end

 Events considerations

Every time the user performs an action on your system, you should verify if the user
is authorized to do so, regardless if you are using LiveViews or not. For example,
imagine a user can see all projects in a web application, but they may not have
permission to delete any of them. At the UI level, you handle this accordingly
by not showing the delete button in the projects listing, but a savvy user can
directly talk to the server and request a deletion anyway. For this reason, you
must always verify permissions on the server.
In LiveView, most actions are handled by the handle_event callback. Therefore,
you typically authorize the user within those callbacks. In the scenario just
described, one might implement this:
on_mount MyAppWeb.UserLiveAuth

def mount(_params, _session, socket) do
 {:ok, load_projects(socket)}
end

def handle_event("delete_project", %{"project_id" => project_id}, socket) do
 Project.delete!(socket.assigns.current_user, project_id)
 {:noreply, update(socket, :projects, &Enum.reject(&1, fn p -> p.id == project_id end)}
end

defp load_projects(socket) do
 projects = Project.all_projects(socket.assigns.current_user)
 assign(socket, projects: projects)
end
First, we used on_mount to authenticate the user based on the data stored in
the session. Then we load all projects based on the authenticated user. Now,
whenever there is a request to delete a project, we still pass the current user
as argument to the Project context, so it verifies if the user is allowed to
delete it or not. In case it cannot delete, it is fine to just raise an exception.
After all, users are not meant to trigger this code path anyway (unless they are
fiddling with something they are not supposed to!).

 Disconnecting all instances of a live user

So far, the security model between LiveView and regular web applications have
been remarkably similar. After all, we must always authenticate and authorize
every user. The main difference between them happens on logout or when revoking
access.
Because LiveView is a permanent connection between client and server, if a user
is logged out, or removed from the system, this change won't reflect on the
LiveView part unless the user reloads the page.
Luckily, it is possible to address this by setting a live_socket_id in the
session. For example, when logging in a user, you could do:
conn
|> put_session(:current_user_id, user.id)
|> put_session(:live_socket_id, "users_socket:#{user.id}")
Now all LiveView sockets will be identified and listen to the given live_socket_id.
You can then disconnect all live users identified by said ID by broadcasting on
the topic:
MyAppWeb.Endpoint.broadcast("users_socket:#{user.id}", "disconnect", %{})
Note: If you use mix phx.gen.auth to generate your authentication system,
lines to that effect are already present in the generated code. The generated
code uses a user_token instead of referring to the user_id.

Once a LiveView is disconnected, the client will attempt to reestablish
the connection and re-execute the mount/3
callback. In this case, if the user is no longer logged in or it no longer has
access to the current resource, mount/3 will fail and the user will be
redirected.
This is the same mechanism provided by Phoenix.Channels. Therefore, if
your application uses both channels and LiveViews, you can use the same
technique to disconnect any stateful connection.

 live_session and live_redirect

LiveView supports live redirect, which allows users to navigate between
pages over the LiveView connection. Whenever there is a live_redirect,
a new LiveView will be mounted, skipping the regular HTTP requests and
without going through the plug pipeline.
However, if you want to draw stronger boundaries between parts of your
application, you can also use Phoenix.LiveView.Router.live_session/2
to group your live routes. This can be handy because you can only
live_redirect between LiveViews in the same live_session.
For example, imagine you need to authenticate two distinct types of users.
Your regular users login via email and password, and you have an admin
dashboard that uses http auth. You can specify different live_sessions
for each authentication flow:
live_session :default do
 scope "/" do
 pipe_through [:authenticate_user]
 get ...
 live ...
 end
end

live_session :admin do
 scope "/admin" do
 pipe_through [:http_auth_admin]
 get ...
 live ...
 end
end
Now every time you try to navigate to an admin panel, and out of it,
a regular page navigation will happen and a brand new live connection
will be established.
Once again, it is worth remembering that LiveViews require their own
security checks, so we use pipe_through above to protect the regular
routes (get, post, etc.) and the LiveViews should run their own checks
using on_mount hooks.
live_session can also be used to enforce each LiveView group has
a different root layout, since layouts are not updated between live
redirects:
live_session :default, root_layout: {Layouts, :root} do
 ...
end

live_session :admin, root_layout: {Layouts, :admin} do
 ...
end
Finally, you can even combine live_session with on_mount. Instead
of declaring on_mount on every LiveView, you can declare it at the
router level and it will enforce it on all LiveViews under it:
live_session :default, on_mount: MyAppWeb.UserLiveAuth do
 scope "/" do
 pipe_through [:authenticate_user]
 live ...
 end
end

live_session :admin, on_mount: MyAppWeb.AdminLiveAuth do
 scope "/admin" do
 pipe_through [:authenticate_admin]
 live ...
 end
end
Each live route under the :default live_session will invoke
the MyAppWeb.UserLiveAuth hook on mount. This module was defined
earlier in this guide. We will also pipe regular web requests through
:authenticate_user, which must execute the same checks as
MyAppWeb.UserLiveAuth, but tailored to plug.
Similarly, the :admin live_session has its own authentication
flow, powered by MyAppWeb.AdminLiveAuth. It also defines a plug
equivalent named :authenticate_admin, which will be used by any
regular request. If there are no regular web requests defined under
a live session, then the pipe_through checks are not necessary.
Declaring the on_mount on live_session is exactly the same as
declaring it in each LiveView. It will be executed every time a
LiveView is mounted, even after live_redirects.

 Summing up

The important concepts to keep in mind are:
	If you have both LiveViews and regular web requests, then any
authorization logic in your plugs must be replicated in your LiveView.
Code that executes on the mount callback always runs on both live
and regular web requests to that LiveView

	All actions (events) must also be explicitly authorized by
checking permissions. Those permissions are often domain/business
specific, and typically happen in your context modules. This is
also a requirement for regular requests and responses

	live_session can be used to draw boundaries between groups of
LiveViews. While you could use live_session to draw lines between
different authorization rules, doing so would lead to frequent page
reloads. For this reason, we typically use live_session to enforce
different authentication requirements or whenever you need to
change root layouts

Telemetry

LiveView currently exposes the following telemetry events:
	[:phoenix, :live_view, :mount, :start] - Dispatched by a Phoenix.LiveView
immediately before mount/3 is invoked.
	Measurement:
%{system_time: System.monotonic_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 params: unsigned_params | :not_mounted_at_router,
 session: map,
 uri: String.t() | nil
}

	[:phoenix, :live_view, :mount, :stop] - Dispatched by a Phoenix.LiveView
when the mount/3 callback completes successfully.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 params: unsigned_params | :not_mounted_at_router,
 session: map,
 uri: String.t() | nil
}

	[:phoenix, :live_view, :mount, :exception] - Dispatched by a Phoenix.LiveView
when an exception is raised in the mount/3 callback.
	Measurement: %{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 params: unsigned_params | :not_mounted_at_router,
 session: map,
 uri: String.t() | nil
}

	[:phoenix, :live_view, :handle_params, :start] - Dispatched by a Phoenix.LiveView
immediately before handle_params/3 is invoked.
	Measurement:
%{system_time: System.monotonic_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 params: unsigned_params,
 uri: String.t()
}

	[:phoenix, :live_view, :handle_params, :stop] - Dispatched by a Phoenix.LiveView
when the handle_params/3 callback completes successfully.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 params: unsigned_params,
 uri: String.t()
}

	[:phoenix, :live_view, :handle_params, :exception] - Dispatched by a Phoenix.LiveView
when an exception is raised in the handle_params/3 callback.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 params: unsigned_params,
 uri: String.t()
}

	[:phoenix, :live_view, :handle_event, :start] - Dispatched by a Phoenix.LiveView
immediately before handle_event/3 is invoked.
	Measurement:
%{system_time: System.monotonic_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_view, :handle_event, :stop] - Dispatched by a Phoenix.LiveView
when the handle_event/3 callback completes successfully.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_view, :handle_event, :exception] - Dispatched by a Phoenix.LiveView
when an exception is raised in the handle_event/3 callback.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_view, :render, :start] - Dispatched by a Phoenix.LiveView
immediately before render/1 is invoked.
	Measurement:
%{system_time: System.monotonic_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 force?: boolean,
 changed?: boolean
}

	[:phoenix, :live_view, :render, :stop] - Dispatched by a Phoenix.LiveView
when the render/1 callback completes successfully.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 force?: boolean,
 changed?: boolean
}

	[:phoenix, :live_view, :render, :exception] - Dispatched by a Phoenix.LiveView
when an exception is raised in the render/1 callback.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 force?: boolean,
 changed?: boolean
}

	[:phoenix, :live_component, :update, :start] - Dispatched by a Phoenix.LiveComponent
immediately before update/2 or a
update_many/1 is invoked.
In the case ofupdate/2 it might dispatch one event
for multiple calls.
	Measurement:
%{system_time: System.monotonic_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 component: atom,
 assigns_sockets: [{map(), Phoenix.LiveView.Socket.t}]
}

	[:phoenix, :live_component, :update, :stop] - Dispatched by a Phoenix.LiveComponent
when the update/2 or a
update_many/1 callback completes successfully.
In the case ofupdate/2 it might dispatch one event
for multiple calls. The sockets metadata contain the updated sockets.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 component: atom,
 assigns_sockets: [{map(), Phoenix.LiveView.Socket.t}],
 sockets: [Phoenix.LiveView.Socket.t]
}

	[:phoenix, :live_component, :update, :exception] - Dispatched by a Phoenix.LiveComponent
when an exception is raised in the update/2 or a
update_many/1 callback.
In the case ofupdate/2 it might dispatch one event
for multiple calls.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 component: atom,
 assigns_sockets: [{map(), Phoenix.LiveView.Socket.t}]
}

	[:phoenix, :live_component, :handle_event, :start] - Dispatched by a Phoenix.LiveComponent
immediately before handle_event/3 is invoked.
	Measurement:
%{system_time: System.monotonic_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 component: atom,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_component, :handle_event, :stop] - Dispatched by a Phoenix.LiveComponent
when the handle_event/3 callback completes successfully.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 component: atom,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_component, :handle_event, :exception] - Dispatched by a Phoenix.LiveComponent
when an exception is raised in the handle_event/3 callback.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 component: atom,
 event: String.t(),
 params: unsigned_params
}

Uploads

LiveView supports interactive file uploads with progress for
both direct to server uploads as well as direct-to-cloud
external uploads on the client.

 Built-in Features

	Accept specification - Define accepted file types, max
number of entries, max file size, etc. When the client
selects file(s), the file metadata is automatically
validated against the specification. See
Phoenix.LiveView.allow_upload/3.

	Reactive entries - Uploads are populated in an
@uploads assign in the socket. Entries automatically
respond to progress, errors, cancellation, etc.

	Drag and drop - Use the phx-drop-target attribute to
enable. See Phoenix.Component.live_file_input/1.

 Allow uploads

You enable an upload, typically on mount, via allow_upload/3:
@impl Phoenix.LiveView
def mount(_params, _session, socket) do
 {:ok,
 socket
 |> assign(:uploaded_files, [])
 |> allow_upload(:avatar, accept: ~w(.jpg .jpeg), max_entries: 2)}
end
That's it for now! We will come back to the LiveView to
implement some form- and upload-related callbacks later, but
most of the functionality around uploads takes place in the
template.

 Render reactive elements

Use the Phoenix.Component.live_file_input/1 component
to render a file input for the upload:
<%!-- lib/my_app_web/live/upload_live.html.heex --%>

<form id="upload-form" phx-submit="save" phx-change="validate">
 <.live_file_input upload={@uploads.avatar} />
 <button type="submit">Upload</button>
</form>
Important: You must bind phx-submit and phx-change on the form.

Note that while live_file_input/1
allows you to set additional attributes on the file input,
many attributes such as id, accept, and multiple will
be set automatically based on the allow_upload/3 spec.
Reactive updates to the template will occur as the end-user
interacts with the file input.

 Upload entries

Uploads are populated in an @uploads assign in the socket.
Each allowed upload contains a list of entries,
irrespective of the :max_entries value in the
allow_upload/3 spec. These entry structs contain all the
information about an upload, including progress, client file
info, errors, etc.
Let's look at an annotated example:
<%!-- lib/my_app_web/live/upload_live.html.heex --%>

<%!-- use phx-drop-target with the upload ref to enable file drag and drop --%>
<section phx-drop-target={@uploads.avatar.ref}>

<%!-- render each avatar entry --%>
<%= for entry <- @uploads.avatar.entries do %>
 <article class="upload-entry">

 <figure>
 <.live_img_preview entry={entry} />
 <figcaption><%= entry.client_name %></figcaption>
 </figure>

 <%!-- entry.progress will update automatically for in-flight entries --%>
 <progress value={entry.progress} max="100"> <%= entry.progress %>% </progress>

 <%!-- a regular click event whose handler will invoke Phoenix.LiveView.cancel_upload/3 --%>
 <button type="button" phx-click="cancel-upload" phx-value-ref={entry.ref} aria-label="cancel">×</button>

 <%!-- Phoenix.Component.upload_errors/2 returns a list of error atoms --%>
 <%= for err <- upload_errors(@uploads.avatar, entry) do %>
 <p class="alert alert-danger"><%= error_to_string(err) %></p>
 <% end %>

 </article>
<% end %>

<%!-- Phoenix.Component.upload_errors/1 returns a list of error atoms --%>
<%= for err <- upload_errors(@uploads.avatar) do %>
 <p class="alert alert-danger"><%= error_to_string(err) %></p>
<% end %>

</section>
The section element in the example acts as the
phx-drop-target for the :avatar upload. Users can interact
with the file input or they can drop files over the element
to add new entries.
Upload entries are created when a file is added to the form
input and each will exist until it has been consumed,
following a successfully completed upload.

 Entry validation

Validation occurs automatically based on any conditions
that were specified in allow_upload/3 however, as
mentioned previously you are required to bind phx-change
on the form in order for the validation to be performed.
Therefore you must implement at least a minimal callback:
@impl Phoenix.LiveView
def handle_event("validate", _params, socket) do
 {:noreply, socket}
end
Entries for files that do not match the allow_upload/3
spec will contain errors. Use
Phoenix.Component.upload_errors/2 and your own
helper function to render a friendly error message:
defp error_to_string(:too_large), do: "Too large"
defp error_to_string(:not_accepted), do: "You have selected an unacceptable file type"
For error messages that affect all entries, use
Phoenix.Component.upload_errors/1, and your own
helper function to render a friendly error message:
defp error_to_string(:too_many_files), do: "You have selected too many files"

 Cancel an entry

Upload entries may also be canceled, either programmatically
or as a result of a user action. For instance, to handle the
click event in the template above, you could do the following:
@impl Phoenix.LiveView
def handle_event("cancel-upload", %{"ref" => ref}, socket) do
 {:noreply, cancel_upload(socket, :avatar, ref)}
end

 Consume uploaded entries

When the end-user submits a form containing a live_file_input/1,
the JavaScript client first uploads the file(s) before
invoking the callback for the form's phx-submit event.
Within the callback for the phx-submit event, you invoke
the Phoenix.LiveView.consume_uploaded_entries/3 function
to process the completed uploads, persisting the relevant
upload data alongside the form data:
@impl Phoenix.LiveView
def handle_event("save", _params, socket) do
 uploaded_files =
 consume_uploaded_entries(socket, :avatar, fn %{path: path}, _entry ->
 dest = Path.join(Application.app_dir(:my_app, "priv/static/uploads"), Path.basename(path))
 # You will need to create `priv/static/uploads` for `File.cp!/2` to work.
 File.cp!(path, dest)
 {:ok, ~p"/uploads/#{Path.basename(dest)}"}
 end)

 {:noreply, update(socket, :uploaded_files, &(&1 ++ uploaded_files))}
end
Note: While client metadata cannot be trusted, max file size validations
are enforced as each chunk is received when performing direct to server uploads.

This example writes the file directly to disk, under the priv folder.
In order to access your upload, for example in an tag, you need
to add the uploads directory to static_paths/0. In a vanilla Phoenix
project, this is found in lib/my_app_web.ex.
Another thing to be aware of is that in development, changes to
priv/static/uploads will be picked up by live_reload. This means that as
soon as your upload succeeds, your app will be reloaded in the browser. This
can be temporarily disabled by setting code_reloader: false in config/dev.exs.
Besides the above, this approach also has limitations in production. If you are
running multiple instances of your application, the uploaded file will be stored
only in one of the instances. Any request routed to the other machine will
ultimately fail.
For these reasons, it is best if uploads are stored elsewhere, such as the
database (depending on the size and contents) or a separate storage service.
For more information on implementing client-side, direct-to-cloud uploads,
see the External Uploads guide.

 Appendix A: UploadLive

A complete example of the LiveView from this guide:
lib/my_app_web/live/upload_live.ex
defmodule MyAppWeb.UploadLive do
 use MyAppWeb, :live_view

 @impl Phoenix.LiveView
 def mount(_params, _session, socket) do
 {:ok,
 socket
 |> assign(:uploaded_files, [])
 |> allow_upload(:avatar, accept: ~w(.jpg .jpeg), max_entries: 2)}
 end

 @impl Phoenix.LiveView
 def handle_event("validate", _params, socket) do
 {:noreply, socket}
 end

 @impl Phoenix.LiveView
 def handle_event("cancel-upload", %{"ref" => ref}, socket) do
 {:noreply, cancel_upload(socket, :avatar, ref)}
 end

 @impl Phoenix.LiveView
 def handle_event("save", _params, socket) do
 uploaded_files =
 consume_uploaded_entries(socket, :avatar, fn %{path: path}, _entry ->
 dest = Path.join([:code.priv_dir(:my_app), "static", "uploads", Path.basename(path)])
 # You will need to create `priv/static/uploads` for `File.cp!/2` to work.
 File.cp!(path, dest)
 {:ok, ~p"/uploads/#{Path.basename(dest)}"}
 end)

 {:noreply, update(socket, :uploaded_files, &(&1 ++ uploaded_files))}
 end

 defp error_to_string(:too_large), do: "Too large"
 defp error_to_string(:too_many_files), do: "You have selected too many files"
 defp error_to_string(:not_accepted), do: "You have selected an unacceptable file type"
end
To access your uploads via your app, make sure to add uploads to
MyAppWeb.static_paths/0.

Gettext for internationalization

For internationalization with gettext,
you must call Gettext.put_locale/2 on the LiveView mount callback to instruct
the LiveView which locale should be used for rendering the page.
However, one question that has to be answered is how to retrieve the locale in
the first place. There are many approaches to solve this problem:
	The locale could be stored in the URL as a parameter
	The locale could be stored in the session
	The locale could be stored in the database

We will briefly cover these approaches to provide some direction.

 Locale from parameters

You can say all URLs have a locale parameter. In your router:
scope "/:locale" do
 live ...
 get ...
end
Accessing a page without a locale should automatically redirect
to a URL with locale (the best locale could be fetched from
HTTP headers, which is outside of the scope of this guide).
Then, assuming all URLs have a locale, you can set the Gettext
locale accordingly:
def mount(%{"locale" => locale}, _session, socket) do
 Gettext.put_locale(MyApp.Gettext, locale)
 {:ok, socket}
end
You can also use the on_mount hook to
automatically restore the locale for every LiveView in your application:
defmodule MyAppWeb.RestoreLocale do
 def on_mount(:default, %{"locale" => locale}, _session, socket) do
 Gettext.put_locale(MyApp.Gettext, locale)
 {:cont, socket}
 end

 # catch-all case
 def on_mount(:default, _params, _session, socket), do: {:cont, socket}
end
Then, add this hook to def live_view under MyAppWeb, to run it on all
LiveViews by default:
def live_view do
 quote do
 use Phoenix.LiveView,
 layout: {MyAppWeb.Layouts, :app}

 on_mount MyAppWeb.RestoreLocale
 unquote(view_helpers())
 end
end
Note that, because the Gettext locale is not stored in the assigns, if you
want to change the locale, you must use <.link navigate={...} />, instead
of simply patching the page.

 Locale from session

You may also store the locale in the Plug session. For example, in a controller
you might do:
def put_user_session(conn, current_user) do
 Gettext.put_locale(MyApp.Gettext, current_user.locale)

 conn
 |> put_session(:user_id, current_user.id)
 |> put_session(:locale, current_user.locale)
end
and then restore the locale from session within your LiveView mount:
def mount(_params, %{"locale" => locale}, socket) do
 Gettext.put_locale(MyApp.Gettext, locale)
 {:ok, socket}
end
You can also encapsulate this in a hook, as done in the previous section.
However, if the locale is stored in the session, you can only change it
by using regular controller requests. Therefore you should always use
<.link to={...} /> to point to a controller that change the session
accordingly, reloading any LiveView.

 Locale from database

You may also allow users to store their locale configuration in the database.
Then, on mount/3, you can retrieve the user id from the session and load
the locale:
def mount(_params, %{"user_id" => user_id}, socket) do
 user = Users.get_user!(user_id)
 Gettext.put_locale(MyApp.Gettext, user.locale)
 {:ok, socket}
end
In practice, you may end-up mixing more than one approach listed here.
For example, reading from the database is great once the user is logged in
but, before that happens, you may need to store the locale in the session
or in the URL.
Similarly, you can keep the locale in the URL, but change the URL accordingly
to the user preferred locale once they sign in. Hopefully this guide gives
some suggestions on how to move forward and explore the best approach for your
application.

Bindings

Phoenix supports DOM element bindings for client-server interaction. For
example, to react to a click on a button, you would render the element:
<button phx-click="inc_temperature">+</button>
Then on the server, all LiveView bindings are handled with the handle_event
callback, for example:
def handle_event("inc_temperature", _value, socket) do
 {:ok, new_temp} = Thermostat.inc_temperature(socket.assigns.id)
 {:noreply, assign(socket, :temperature, new_temp)}
end
	Binding	Attributes
	Params	phx-value-*
	Click Events	phx-click, phx-click-away
	Form Events	phx-change, phx-submit, phx-feedback-for, phx-feedback-group, phx-disable-with, phx-trigger-action, phx-auto-recover
	Focus Events	phx-blur, phx-focus, phx-window-blur, phx-window-focus
	Key Events	phx-keydown, phx-keyup, phx-window-keydown, phx-window-keyup, phx-key
	Scroll Events	phx-viewport-top, phx-viewport-bottom
	DOM Patching	phx-mounted, phx-update, phx-remove
	JS Interop	phx-hook
	Lifecycle Events	phx-mounted, phx-disconnected, phx-connected
	Rate Limiting	phx-debounce, phx-throttle
	Static tracking	phx-track-static

 Click Events

The phx-click binding is used to send click events to the server.
When any client event, such as a phx-click click is pushed, the value
sent to the server will be chosen with the following priority:
	The :value specified in Phoenix.LiveView.JS.push/3, such as:
<div phx-click={JS.push("inc", value: %{myvar1: @val1})}>

	Any number of optional phx-value- prefixed attributes, such as:
<div phx-click="inc" phx-value-myvar1="val1" phx-value-myvar2="val2">
will send the following map of params to the server:
def handle_event("inc", %{"myvar1" => "val1", "myvar2" => "val2"}, socket) do
If the phx-value- prefix is used, the server payload will also contain a "value"
if the element's value attribute exists.

	The payload will also include any additional user defined metadata of the client event.
For example, the following LiveSocket client option would send the coordinates and
altKey information for all clicks:
let liveSocket = new LiveSocket("/live", Socket, {
 params: {_csrf_token: csrfToken},
 metadata: {
 click: (e, el) => {
 return {
 altKey: e.altKey,
 clientX: e.clientX,
 clientY: e.clientY
 }
 }
 }
})

The phx-click-away event is fired when a click event happens outside of the element.
This is useful for hiding toggled containers like drop-downs.

 Focus and Blur Events

Focus and blur events may be bound to DOM elements that emit
such events, using the phx-blur, and phx-focus bindings, for example:
<input name="email" phx-focus="myfocus" phx-blur="myblur"/>
To detect when the page itself has received focus or blur,
phx-window-focus and phx-window-blur may be specified. These window
level events may also be necessary if the element in consideration
(most often a div with no tabindex) cannot receive focus. Like other
bindings, phx-value-* can be provided on the bound element, and those
values will be sent as part of the payload. For example:
<div class="container"
 phx-window-focus="page-active"
 phx-window-blur="page-inactive"
 phx-value-page="123">
 ...
</div>

 Key Events

The onkeydown, and onkeyup events are supported via the phx-keydown,
and phx-keyup bindings. Each binding supports a phx-key attribute, which triggers
the event for the specific key press. If no phx-key is provided, the event is triggered
for any key press. When pushed, the value sent to the server will contain the "key"
that was pressed, plus any user-defined metadata. For example, pressing the
Escape key looks like this:
%{"key" => "Escape"}
To capture additional user-defined metadata, the metadata option for keydown events
may be provided to the LiveSocket constructor. For example:
let liveSocket = new LiveSocket("/live", Socket, {
 params: {_csrf_token: csrfToken},
 metadata: {
 keydown: (e, el) => {
 return {
 key: e.key,
 metaKey: e.metaKey,
 repeat: e.repeat
 }
 }
 }
})
To determine which key has been pressed you should use key value. The
available options can be found on
MDN
or via the Key Event Viewer.
Note: phx-keyup and phx-keydown are not supported on inputs.
Instead use form bindings, such as phx-change, phx-submit, etc.
Note: it is possible for certain browser features like autofill to trigger key events
with no "key" field present in the value map sent to the server. For this reason, we
recommend always having a fallback catch-all event handler for LiveView key bindings.
By default, the bound element will be the event listener, but a
window-level binding may be provided via phx-window-keydown or phx-window-keyup,
for example:
def render(assigns) do
 ~H"""
 <div id="thermostat" phx-window-keyup="update_temp">
 Current temperature: <%= @temperature %>
 </div>
 """
end

def handle_event("update_temp", %{"key" => "ArrowUp"}, socket) do
 {:ok, new_temp} = Thermostat.inc_temperature(socket.assigns.id)
 {:noreply, assign(socket, :temperature, new_temp)}
end

def handle_event("update_temp", %{"key" => "ArrowDown"}, socket) do
 {:ok, new_temp} = Thermostat.dec_temperature(socket.assigns.id)
 {:noreply, assign(socket, :temperature, new_temp)}
end

def handle_event("update_temp", _, socket) do
 {:noreply, socket}
end

 Scroll Events and Infinite Stream pagination

The phx-viewport-top and phx-viewport-bottom bindings allow you to detect when a container's
first child reaches the top of the viewport, or the last child reaches the bottom of the viewport.
This is useful for infinite scrolling where you want to send paging events for the next results set or previous results set as the user is scrolling up and down and reaches the top or bottom of the viewport.
Generally, applications will add padding above and below a container when performing infinite scrolling to allow smooth scrolling as results are loaded. Combined with Phoenix.LiveView.stream/3, the phx-viewport-top and phx-viewport-bottom allow for infinite virtualized list that only keeps a small set of actual elements in the DOM. For example:
def mount(_, _, socket) do
 {:ok,
 socket
 |> assign(page: 1, per_page: 20)
 |> paginate_posts(1)}
end

defp paginate_posts(socket, new_page) when new_page >= 1 do
 %{per_page: per_page, page: cur_page} = socket.assigns
 posts = Blog.list_posts(offset: (new_page - 1) * per_page, limit: per_page)

 {posts, at, limit} =
 if new_page >= cur_page do
 {posts, -1, per_page * 3 * -1}
 else
 {Enum.reverse(posts), 0, per_page * 3}
 end

 case posts do
 [] ->
 assign(socket, end_of_timeline?: at == -1)

 [_ | _] = posts ->
 socket
 |> assign(end_of_timeline?: false)
 |> assign(:page, new_page)
 |> stream(:posts, posts, at: at, limit: limit)
 end
end
Our paginate_posts function fetches a page of posts, and determines if the user is paging to a previous page or next page. Based on the direction of paging, the stream is either prepended to, or appended to with at of 0 or -1 respectively. We also set the limit of the stream to three times the per_page to allow enough posts in the UI to appear as an infinite list, but small enough to maintain UI performance. We also set an @end_of_timeline? assign to track whether the user is at the end of results or not. Finally, we update the @page assign and posts stream. We can then wire up our container to support the viewport events:
<ul
 id="posts"
 phx-update="stream"
 phx-viewport-top={@page > 1 && "prev-page"}
 phx-viewport-bottom={!@end_of_timeline? && "next-page"}
 phx-page-loading
 class={[
 if(@end_of_timeline?, do: "pb-10", else: "pb-[calc(200vh)]"),
 if(@page == 1, do: "pt-10", else: "pt-[calc(200vh)]")
]}
>
 <li :for={{id, post} <- @streams.posts} id={id}>
 <.post_card post={post} />

<div :if={@end_of_timeline?} class="mt-5 text-[50px] text-center">
 🎉 You made it to the beginning of time 🎉
</div>
There's not much here, but that's the point! This little snippet of UI is driving a fully virtualized list with bidirectional infinite scrolling. We use the phx-viewport-top binding to send the "prev-page" event to the LiveView, but only if the user is beyond the first page. It doesn't make sense to load negative page results, so we remove the binding entirely in those cases. Next, we wire up phx-viewport-bottom to send the "next-page" event, but only if we've yet to reach the end of the timeline. Finally, we conditionally apply some css classes which sets a large top and bottom padding to twice the viewport height based on the current pagination for smooth scrolling.
To complete our solution, we only need to handle the "prev-page" and "next-page" events in the LiveView:
def handle_event("next-page", _, socket) do
 {:noreply, paginate_posts(socket, socket.assigns.page + 1)}
end

def handle_event("prev-page", %{"_overran" => true}, socket) do
 {:noreply, paginate_posts(socket, 1)}
end

def handle_event("prev-page", _, socket) do
 if socket.assigns.page > 1 do
 {:noreply, paginate_posts(socket, socket.assigns.page - 1)}
 else
 {:noreply, socket}
 end
end
This code simply calls the paginate_posts function we defined as our first step, using the current or next page to drive the results. Notice that we match on a special "_overran" => true parameter in our "prev-page" event. The viewport events send this parameter when the user has "overran" the viewport top or bottom. Imagine the case where the user is scrolling back up through many pages of results, but grabs the scrollbar and returns immediately to the top of the page. This means our <ul id="posts"> container was overrun by the top of the viewport, and we need to reset the the UI to page the first page.

 Rate limiting events with Debounce and Throttle

All events can be rate-limited on the client by using the
phx-debounce and phx-throttle bindings, with the exception of the phx-blur
binding, which is fired immediately.
Rate limited and debounced events have the following behavior:
	phx-debounce - Accepts either an integer timeout value (in milliseconds),
or "blur". When an integer is provided, emitting the event is delayed by
the specified milliseconds. When "blur" is provided, emitting the event is
delayed until the field is blurred by the user. When the value is omitted
a default of 300ms is used. Debouncing is typically used for input elements.

	phx-throttle - Accepts an integer timeout value to throttle the event in milliseconds.
Unlike debounce, throttle will immediately emit the event, then rate limit it at once
per provided timeout. When the value is omitted a default of 300ms is used.
Throttling is typically used to rate limit clicks, mouse and keyboard actions.

For example, to avoid validating an email until the field is blurred, while validating
the username at most every 2 seconds after a user changes the field:
<form phx-change="validate" phx-submit="save">
 <input type="text" name="user[email]" phx-debounce="blur"/>
 <input type="text" name="user[username]" phx-debounce="2000"/>
</form>
And to rate limit a volume up click to once every second:
<button phx-click="volume_up" phx-throttle="1000">+</button>
Likewise, you may throttle held-down keydown:
<div phx-window-keydown="keydown" phx-throttle="500">
 ...
</div>
Unless held-down keys are required, a better approach is generally to use
phx-keyup bindings which only trigger on key up, thereby being self-limiting.
However, phx-keydown is useful for games and other use cases where a constant
press on a key is desired. In such cases, throttle should always be used.

 Debounce and Throttle special behavior

The following specialized behavior is performed for forms and keydown bindings:
	When a phx-submit, or a phx-change for a different input is triggered,
any current debounce or throttle timers are reset for existing inputs.

	A phx-keydown binding is only throttled for key repeats. Unique keypresses
back-to-back will dispatch the pressed key events.

 JS Commands

LiveView bindings support a JavaScript command interface via the Phoenix.LiveView.JS module, which allows you to specify utility operations that execute on the client when firing phx- binding events, such as phx-click, phx-change, etc. Commands compose together to allow you to push events, add classes to elements, transition elements in and out, and more.
See the Phoenix.LiveView.JS documentation for full usage.
For a small example of what's possible, imagine you want to show and hide a modal on the page without needing to make the round trip to the server to render the content:
<div id="modal" class="modal">
 My Modal
</div>

<button phx-click={JS.show(to: "#modal", transition: "fade-in")}>
 show modal
</button>

<button phx-click={JS.hide(to: "#modal", transition: "fade-out")}>
 hide modal
</button>

<button phx-click={JS.toggle(to: "#modal", in: "fade-in", out: "fade-out")}>
 toggle modal
</button>
Or if your UI library relies on classes to perform the showing or hiding:
<div id="modal" class="modal">
 My Modal
</div>

<button phx-click={JS.add_class("show", to: "#modal", transition: "fade-in")}>
 show modal
</button>

<button phx-click={JS.remove_class("show", to: "#modal", transition: "fade-out")}>
 hide modal
</button>
Commands compose together. For example, you can push an event to the server and
immediately hide the modal on the client:
<div id="modal" class="modal">
 My Modal
</div>

<button phx-click={JS.push("modal-closed") |> JS.remove_class("show", to: "#modal", transition: "fade-out")}>
 hide modal
</button>
It is also useful to extract commands into their own functions:
alias Phoenix.LiveView.JS

def hide_modal(js \\ %JS{}, selector) do
 js
 |> JS.push("modal-closed")
 |> JS.remove_class("show", to: selector, transition: "fade-out")
end
<button phx-click={hide_modal("#modal")}>hide modal</button>
The Phoenix.LiveView.JS.push/3 command is particularly powerful in allowing you to customize the event being pushed to the server. For example, imagine you start with a familiar phx-click which pushes a message to the server when clicked:
<button phx-click="clicked">click</button>
Now imagine you want to customize what happens when the "clicked" event is pushed, such as which component should be targeted, which element should receive css loading state classes, etc. This can be accomplished with options on the JS push command. For example:
<button phx-click={JS.push("clicked", target: @myself, loading: ".container")}>click</button>
See Phoenix.LiveView.JS.push/3 for all supported options.

 Lifecycle Events

LiveView supports the phx-mounted, phx-connected, and phx-disconnected events to react to
different lifecycle events with JS commands.
To execute commands when an element first appears on the page, you can leverage phx-mounted,
such as to animate a notice into view:
<div id="flash" class="hidden" phx-mounted={JS.show(transition: ...)}>
 Welcome back!
</div>
If phx-mounted is used on the initial page render, it will be invoked only after the initial WebSocket connection is established.
To manage the connection lifecycle, you can combine phx-disconnected and phx-connected to show an element when the LiveView has lost its connection, and hide it when the connection recovers:
<div id="status" class="hidden" phx-disconnected={JS.show()} phx-connected={JS.hide()}>
 Attempting to reconnect...
</div>

 LiveView vs static view

phx-connected and phx-disconnected are only executed when operating
inside a LiveView container. For static templates, they will have no effect.
For LiveView, the phx-mounted binding is executed as soon as the LiveView is
mounted with a connection. When using phx-mounted in static views, it is executed
as soon as the DOM is ready.

 LiveView Specific Events

The lv: event prefix supports LiveView specific features that are handled
by LiveView without calling the user's handle_event/3 callbacks. Today,
the following events are supported:
	lv:clear-flash – clears the flash when sent to the server. If a
phx-value-key is provided, the specific key will be removed from the flash.

For example:
<p class="alert" phx-click="lv:clear-flash" phx-value-key="info">
 <%= live_flash(@flash, :info) %>
</p>

 Loading states and errors

All phx- event bindings apply their own css classes when pushed. For example
the following markup:
<button phx-click="clicked" phx-window-keydown="key">...</button>
On click, would receive the phx-click-loading class, and on keydown would receive
the phx-keydown-loading class. The css loading classes are maintained until an
acknowledgement is received on the client for the pushed event.
In the case of forms, when a phx-change is sent to the server, the input element
which emitted the change receives the phx-change-loading class, along with the
parent form tag. The following events receive css loading classes:
	phx-click - phx-click-loading
	phx-change - phx-change-loading
	phx-submit - phx-submit-loading
	phx-focus - phx-focus-loading
	phx-blur - phx-blur-loading
	phx-window-keydown - phx-keydown-loading
	phx-window-keyup - phx-keyup-loading

Additionally, the following classes are applied to the LiveView's parent
container:
	"phx-connected" - applied when the view has connected to the server
	"phx-loading" - applied when the view is not connected to the server
	"phx-error" - applied when an error occurs on the server. Note, this
class will be applied in conjunction with "phx-loading" if connection
to the server is lost.

For navigation related loading states (both automatic and manual), see phx-page-loading as described in
JavaScript interoperability: Live navigation events.

 OEBPS/dist/epub-RKEUJJI5.js
